Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 Apr;87(4):761–770. doi: 10.1128/jb.87.4.761-770.1964

β-GLUCOSIDASE SYSTEM OF NEUROSPORA CRASSA I. β-

Glucosidase and Cellulase Activities of Mutant and Wild-Type Strains

Bruce Eberhart 1,2, David F Cross 1,2, Lewis R Chase 1,2
PMCID: PMC277090  PMID: 14137612

Abstract

Eberhart, Bruce (University of North Carolina, Greensboro), David F. Cross, and Lewis R. Chase. β-Glucosidase system of Neuspora crassa. I. β-Glucosidase and cellulose activities of mutant and wild-type strains. J. Bacteriol. 87:761–770. 1964.—A mutant strain, gluc-1, of Neurospora crassa was isolated and characterized by its low level of β-glucosidase activity. The mutant was selected by testing irradiated colonies for extracellular β-glucosidase activity. Strains containing the gluc-1 gene were also visibly detected by their reduced ability to destroy esculin in their growth media. The mutant strain grew at wild-type rates with cellobiose or carboxymethylcellulose as carbon sources. This auxotrophic similarity with wild type is explained by the presence of at least two β-glucosidases (and possibly two cellulases) in Neurospora that act complementarily. The thermolabile β-glucosidase was destroyed after 1 min of incubation at 60 C. This enzyme was present in mycelia but absent in conidial extracts. A second β-glucosidase that is comparatively stable at 60 C was present in both mycelia and conidia. A partial separation of these enzymes was achieved with ammonium fractionation of mycelial extracts of gluc-1 and wild-type strains. Thermolabile β-glucosidase and cellulase activity appear not to be affected by the gluc-1 mutation, whereas the thermostable glucosidase is greatly reduced in gluc-1 strains.

Full text

PDF
761

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNETT J. A., INGRAM M., SWAIN T. The use of beta-glucosides in classifying yeasts. J Gen Microbiol. 1956 Dec;15(3):529–555. doi: 10.1099/00221287-15-3-529. [DOI] [PubMed] [Google Scholar]
  2. BERGER L. S., EBERHART B. M. Extracellular beta-transglucosidase activity from conidia of Neurospora crassa. Biochem Biophys Res Commun. 1961 Oct 23;6:62–66. doi: 10.1016/0006-291x(61)90186-3. [DOI] [PubMed] [Google Scholar]
  3. DUERKSEN J. D., HALVORSON H. Purification and properties of an inducible beta-glucosidase of yeast. J Biol Chem. 1958 Nov;233(5):1113–1120. [PubMed] [Google Scholar]
  4. EBERHART B. M. Exogenous enzymes of Neurospora conidia and mycelia. J Cell Comp Physiol. 1961 Aug;58:11–16. doi: 10.1002/jcp.1030580103. [DOI] [PubMed] [Google Scholar]
  5. HASH J. H., KING K. W. On the nature of the beta-glucosidases of Myrothecium verrucaria. J Biol Chem. 1958 May;232(1):381–393. [PubMed] [Google Scholar]
  6. HERMAN A., HALVORSON H. GENETIC CONTROL OF BETA-GLUCOSIDASE SYNTHESIS IN SACCHAROMYCES LACTIS. J Bacteriol. 1963 Apr;85:901–910. doi: 10.1128/jb.85.4.901-910.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HERMAN A., HALVORSON H. IDENTIFICATION OF THE STRUCTURAL GENE FOR BETA-GLUCOSIDASE IN SACCHAROMYCES LACTIS. J Bacteriol. 1963 Apr;85:895–900. doi: 10.1128/jb.85.4.895-900.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HOROWITZ N. H., FLING M., MACLEOD H., WATANABE Y. Structural and regulative genes controlling tyrosinase synthesis in Neurospora. Cold Spring Harb Symp Quant Biol. 1961;26:233–238. doi: 10.1101/sqb.1961.026.01.028. [DOI] [PubMed] [Google Scholar]
  9. HOROWITZ N. H., SHEN S. C. Neurospora tyrosinase. J Biol Chem. 1952 May;197(2):513–520. [PubMed] [Google Scholar]
  10. KAPLAN N. O. Symposium on multiple forms of enzymes and control mechanisms. I. Multiple forms of enzymes. Bacteriol Rev. 1963 Jun;27:155–169. doi: 10.1128/br.27.2.155-169.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KOOIMAN P., ROELOFSEN P. A., SWEERIS S. Some properties of cellulase from Myrothecium verrucaria. Enzymologia. 1953 Dec 30;16(4):237–246. [PubMed] [Google Scholar]
  12. LANDMAN O. E., BONNER D. M. Neurospora lactase. I. Properties of lactase preparations from a lactose utilizing and a lactose non-utilizing strain. Arch Biochem Biophys. 1952 Dec;41(2):253–265. doi: 10.1016/0003-9861(52)90454-2. [DOI] [PubMed] [Google Scholar]
  13. LEVINSON H. S., REESE E. T. Enzymatic hydrolysis of soluble cellulose derivatives as measured by changes in viscosity. J Gen Physiol. 1950 May 20;33(5):601–628. doi: 10.1085/jgp.33.5.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MACQUILLAN A. M., HALVORSON H. O. Metabolic control of beta-glucosidase synthesis in yeast. J Bacteriol. 1962 Jul;84:23–30. doi: 10.1128/jb.84.1.23-30.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MANDELS M., MILLER G. L., SLATER R. W., Jr Separation of fungal carbohydrases by starch blockzone electrophoresis. Arch Biochem Biophys. 1961 Apr;93:115–121. doi: 10.1016/0003-9861(61)90322-8. [DOI] [PubMed] [Google Scholar]
  16. MANDELS M., REESE E. T. Induction of cellulase in fungi by cellobiose. J Bacteriol. 1960 Jun;79:816–826. doi: 10.1128/jb.79.6.816-826.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. METZENBERG R. L. A gene affecting the repression of invertase and trehalase in Neurospora. Arch Biochem Biophys. 1962 Mar;96:468–474. doi: 10.1016/0003-9861(62)90322-3. [DOI] [PubMed] [Google Scholar]
  18. MONOD J., JACOB F. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol. 1961;26:389–401. doi: 10.1101/sqb.1961.026.01.048. [DOI] [PubMed] [Google Scholar]
  19. REESE E. T., MANDELS M. Use of enzymes in isolation and analysis of polysaccharides. Appl Microbiol. 1959 Nov;7:378–387. doi: 10.1128/am.7.6.378-387.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. REESE E. T., SIU R. G. H., LEVINSON H. S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol. 1950 Apr;59(4):485–497. doi: 10.1128/jb.59.4.485-497.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHAEFFER G. W., HASKINS F. A., GORZ H. J. Genetic control of coumarin biosynthesis and beta-glucosidase activity in Melilotus alba. Biochem Biophys Res Commun. 1960 Sep;3:268–271. doi: 10.1016/0006-291x(60)90237-0. [DOI] [PubMed] [Google Scholar]
  22. WHITAKER D. R. The mechanism of degradation of a cellodextrin by Myrothecium cellulase. Can J Biochem Physiol. 1956 May;34(3):488–494. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES