Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 Apr;87(4):815–822. doi: 10.1128/jb.87.4.815-822.1964

INDUCIBLE TRANSPORT SYSTEM FOR CITRULLINE IN STREPTOCOCCUS FAECALIS

William R Bibb 1, W R Straughn 1
PMCID: PMC277098  PMID: 14137618

Abstract

Bibb, William R. (University of North Carolina, Chapel Hill), and W. R. Straughan. Inducible transport system for citrulline in Streptococcus faecalis. J. Bacteriol. 87:815–822. 1964.—With Streptococcus faecalis F24, it was demonstrated: that the citrulline transport mechanism, induced by growth in arginine, follows enzyme kinetics; that cell membranes from induced and noninduced cells differ considerably in their ability to adsorb citrulline; that protoplasts demonstrate a similar selectivity; and that, throughout various alterations of the growth medium and growth conditions, a consistent difference in citrulline uptake between induced and noninduced cells was present. A proposed explanation based on experimental findings is offered.

Full text

PDF
815

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAMS A., McNAMARA P., JOHNSON F. B. Adenosine triphosphatase in isolated bacterial cell membranes. J Biol Chem. 1960 Dec;235:3649–3662. [PubMed] [Google Scholar]
  2. BIBB W. R., STRAUGHN W. R. Formation of protoplasts from Streptococcus faecalis by lysozyme. J Bacteriol. 1962 Nov;84:1094–1098. doi: 10.1128/jb.84.5.1094-1098.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gunsalus I. C., Umbreit W. W. The Oxidation of Glycerol by Streptococcus faecalis. J Bacteriol. 1945 Apr;49(4):347–357. doi: 10.1128/jb.49.4.347-357.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. JACKSON A. W., PASIEKA A. E. Arginine degradation by Micrococcus pyogenes var. aureus. Can J Microbiol. 1955 Apr;1(5):339–345. doi: 10.1139/m55-046. [DOI] [PubMed] [Google Scholar]
  5. MAGASANIK B., NEIDHARDT F. C. Inhibitory effect of glucose on enzyme formation. Nature. 1956 Oct 13;178(4537):801–802. doi: 10.1038/178801b0. [DOI] [PubMed] [Google Scholar]
  6. OGINSKY E. L., GEHRIG R. F. The arginine dihydrolase system of Streptococcus faecalis. II. Properties of arginine desimidase. J Biol Chem. 1952 Oct;198(2):799–805. [PubMed] [Google Scholar]
  7. OGINSKY E. L., GEHRIG R. F. The arginine dihydrolase system of Streptococcus faecalis. III. The decomposition of citruline. J Biol Chem. 1953 Oct;204(2):721–729. [PubMed] [Google Scholar]
  8. SISTROM W. R. On the physical state of the intracellularly accumulates substrates of beta-galactoside-permease in Escherichia coli. Biochim Biophys Acta. 1958 Sep;29(3):579–587. doi: 10.1016/0006-3002(58)90015-5. [DOI] [PubMed] [Google Scholar]
  9. TRENTINI W., CHESBRO W. Localization of the "arginine dihyldrolase system" in Streptococcus faecium. Biochim Biophys Acta. 1963 Mar 12;67:511–513. doi: 10.1016/0006-3002(63)91858-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES