Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 Apr;87(4):876–886. doi: 10.1128/jb.87.4.876-886.1964

EFFECT OF SPORULATION MEDIUM ON HEAT RESISTANCE, CHEMICAL COMPOSITION, AND GERMINATION OF BACILLUS MEGATERIUM SPORES1

Hillel S Levinson a, Mildred T Hyatt a
PMCID: PMC277107  PMID: 14137627

Abstract

Levinson, Hillel S. (U.S. Army Natick Laboratories, Natick, Mass.), and Mildred T. Hyatt. Effect of sporulation medium on heat resistance, chemical composition, and germination of Bacillus megaterium spores. J. Bacteriol. 87:876–886. 1964.—Bacillus megaterium spores, grown on variously supplemented media, had varying concentrations of P, Ca, Mn, or dipicolinic acid. Supplementation with CaCl2 yielded spores with increased heat resistance; addition of l-glutamate, l-proline, or increase of the phosphate concentration yielded spores with reduced heat resistance. Germination characteristics depended on both the sporulation medium and the germinant (glucose, l-alanine, l-leucine, or KNO3); pronounced differences were demonstrable with glucose and l-alanine, which trigger germination via different metabolic pathways. An increase in CaCl2 during sporulation yielded spores with increased germination in glucose but not in l-alanine. Germination in l-alanine was optimal with spores produced on media containing 0.1 mm MnCl2, but germination of such spores was minimal in glucose. An increase in the sporulation medium phosphate decreased the initial germination rate in glucose, but not in l-alanine. Spores produced in CaCl2-supplemented media had increased heat-activation requirements (increased dormancy) for germination induced by l-alanine, and decreased heat-shock requirements for glucose-induced germination. An increase of sporulation phosphate yielded spores with reduced dormancy for germination induced by l-alanine, but with unchanged dormancy on the other germinants. Spores produced with added l-glutamate had reduced dormancy for glucose-induced germination, and increased dormancy for germination induced by l-alanine. Addition of CaCl2 or l-glutamate to the sporulation medium yielded spores with increased sensitivity to “ionic germination” (with KI). Spores from synthetic medium were incapacitated for full postgerminative development, as shown by repression of the changes in oxygen-uptake rate which accompany normal cell division.

Full text

PDF
876

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHURCH B. D., HALVORSON H. Intermediate metabolism of aerobic spores. I. Activation of glucose oxidation in spores of Bacillus cereus var terminalis. J Bacteriol. 1957 Apr;73(4):470–476. doi: 10.1128/jb.73.4.470-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Curran H. R., Brunstetter B. C., Myers A. T. Spectrochemical Analysis of Vegetative Cells and Spores of Bacteria. J Bacteriol. 1943 May;45(5):485–494. doi: 10.1128/jb.45.5.485-494.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DONNELLAN J. E., Jr, NAGS E. H., LEVINSON H. S. CHEMICALLY DEFINED, SYNTHETIC MEDIA FOR SPORULATION AND FOR GERMINATION AND GROWTH OF BACILLUS SUBTILIS. J Bacteriol. 1964 Feb;87:332–336. doi: 10.1128/jb.87.2.332-336.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Darby R. T., Mandels G. R. Effects of Sporulation Medium and Age on Fungus Spore Physiology. Plant Physiol. 1955 Jul;30(4):360–366. doi: 10.1104/pp.30.4.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EL-BISI H. M., ORDAL Z. J. The effect of certain sporulation conditions on the thermal death rate of Bacillus coagulans var. thermoacidurans. J Bacteriol. 1956 Jan;71(1):1–9. doi: 10.1128/jb.71.1.1-9.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foster J. W., Heiligman F. MINERAL DEFICIENCIES IN COMPLEX ORGANIC MEDIA AS LIMITING FACTORS IN THE SPORULATION OF AEROBIC BACILLI. J Bacteriol. 1949 Jun;57(6):613–615. doi: 10.1128/jb.57.6.613-615.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foster J. W., Wynne E. S. The Problem of "Dormancy" in Bacterial Spores. J Bacteriol. 1948 May;55(5):623–625. doi: 10.1128/jb.55.5.623-625.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GOLDMAN M., BLUMENTHAL H. U. Pathways of glucose catabolism in intact heat-activated spores of Bacillus cereus. Biochem Biophys Res Commun. 1960 Aug;3:164–168. doi: 10.1016/0006-291x(60)90215-1. [DOI] [PubMed] [Google Scholar]
  9. HYATT M. T., LEVINSON H. S. Conditions affecting Bacillus megaterium spore germination in glucose or various nitrogenous compounds. J Bacteriol. 1962 Jun;83:1231–1237. doi: 10.1128/jb.83.6.1231-1237.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HYATT M. T., LEVINSON H. S. Correlation of respiratory activity with phases of spore germination and growth in Bacillus megaterium as influenced by manganese and L-alanine. J Bacteriol. 1956 Aug;72(2):176–183. doi: 10.1128/jb.72.2.176-183.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HYATT M. T., LEVINSON H. S. Interaction of heat, glucose, L-alanine, and potassium nitrate in spore germination of Bacillus megaterium. J Bacteriol. 1961 Feb;81:204–211. doi: 10.1128/jb.81.2.204-211.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  13. KEYNAN A., MURRELL W. G., HALVORSON H. O. Germination properties of spores with low dipicolinic acid content. J Bacteriol. 1962 Feb;83:395–399. doi: 10.1128/jb.83.2.395-399.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LECHOWICH R. V., ORDAL Z. J. The influence of the sporulation temperature on the heat resistance and chemical composition of bacterial spores. Can J Microbiol. 1962 Jun;8:287–295. doi: 10.1139/m62-040. [DOI] [PubMed] [Google Scholar]
  15. LEVINSON H. S., SEVAG M. G. Stimulation of germination and respiration of the spores of Bacillus megatherium by manganese and monovalent anions. J Gen Physiol. 1953 May;36(5):617–629. doi: 10.1085/jgp.36.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morrison E. W., Rettger L. F. BACTERIAL SPORES I. A STUDY IN HEAT RESISTANCE AND DORMANCY. J Bacteriol. 1930 Nov;20(5):299–311. doi: 10.1128/jb.20.5.299-311.1930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RODE L. J., FOSTER J. W. Ionic and non-ionic compounds in the germination of spores of Bacillus megaterium Texas. Arch Mikrobiol. 1962;43:201–212. doi: 10.1007/BF00406436. [DOI] [PubMed] [Google Scholar]
  18. RODE L. J., FOSTER J. W. Ionic germination of spores of Bacillus megaterium QM B 1551. Arch Mikrobiol. 1962;43:183–200. doi: 10.1007/BF00406435. [DOI] [PubMed] [Google Scholar]
  19. SLEPECKY R., FOSTER J. W. Alterations in metal content of spores of Bacillus megaterium and the effect on some spore properties. J Bacteriol. 1959 Jul;78(1):117–123. doi: 10.1128/jb.78.1.117-123.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. STEWART B. T., HALVORSON H. O. Studies on the spores of aerobic bacteria. I. The occurrence of alanine racemase. J Bacteriol. 1953 Feb;65(2):160–166. doi: 10.1128/jb.65.2.160-166.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SUGIYAMA H. Studies on factors affecting the heat resistance of spores of Clostridium botulinum. J Bacteriol. 1951 Jul;62(1):81–96. doi: 10.1128/jb.62.1.81-96.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES