Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 May;87(5):977–987. doi: 10.1128/jb.87.5.977-987.1964

ROLE OF RIBONUCLEIC ACID BIOSYNTHESIS IN MULTIPLICATION OF TYPE 5 ADENOVIRUS

John F Flanagan a,1, Harold S Ginsberg a
PMCID: PMC277134  PMID: 5874548

Abstract

Flanagan, John F. (University of Pennsylvania, Philadelphia), and Harold S. Ginsberg. Role of ribonucleic acid biosynthesis in multiplication of type 5 adenovirus. J. Bacteriol. 87:977–987. 1964.—The requirement for ribonucleic acid (RNA) biosynthesis in the multiplication of type 5 adenovirus was investigated by using radioactive phosphorus to label nucleic acids and two pyrimidine analogues, 6-azauridine and 5-fluorouracil or 5-fluorouridine, to inhibit synthesis of functional RNA. The data indicate that biosynthesis of RNA after infection is essential for production of virus-specific deoxyribonucleic acid, virus antigens, and infectious particles. The onset of essential RNA synthesis occurs 8 to 9 hr after virus infection and prior to the biosynthesis of other known virus-induced macromolecules.

Full text

PDF
977

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLFREY V. G., MIRSKY A. E. Evidence for the complete DNA-dependence of RNA synthesis in isolated thymus nuclei. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1590–1596. doi: 10.1073/pnas.48.9.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRENNER S. RNA, ribosomes, and protein synthesis. Cold Spring Harb Symp Quant Biol. 1961;26:101–110. doi: 10.1101/sqb.1961.026.01.015. [DOI] [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen S. S., Flaks J. G., Barner H. D., Loeb M. R., Lichtenstein J. THE MODE OF ACTION OF 5-FLUOROURACIL AND ITS DERIVATIVES. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1004–1012. doi: 10.1073/pnas.44.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Consigli R. A., Ginsberg H. S. Activity of aspartate transcarbamylase in uninfected and type 5 adenovirus-infected HeLa cells. J Bacteriol. 1964 May;87(5):1034–1043. doi: 10.1128/jb.87.5.1034-1043.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DISCHE Z. Qualitative and quantitative colorimetric determination of heptoses. J Biol Chem. 1953 Oct;204(2):983–997. [PubMed] [Google Scholar]
  7. EISENSTADT J. M., KAMEYAMA T., NOVELLI G. D. A requirement for gene-specific deoxyribonucleic acid for the cell-free synthesis of beta-galactosidase. Proc Natl Acad Sci U S A. 1962 Apr 15;48:652–659. doi: 10.1073/pnas.48.4.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FLANAGAN J. F., GINSBERG H. S. Synthesis of virus-specific polymers in adenovirus-infected cells; effect of 5-fluorodeoxyuridine. J Exp Med. 1962 Aug 1;116:141–157. doi: 10.1084/jem.116.2.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GINSBERG H. S., BADGER G. F., DINGLE J. H., JORDAN W. S., Jr, KATZ S. Etiologic relationship of the RI-67 agent to acute respiratory disease (ARD). J Clin Invest. 1955 Jun;34(6):820–831. doi: 10.1172/JCI103137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GINSBERG H. S. Characteristics on the adenoviruses. III. Reproductive cycle of types 1 to 4. J Exp Med. 1958 Jan 1;107(1):133–152. doi: 10.1084/jem.107.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GINSBERG H. S., DIXON M. K. Deoxyribonucleic acid (DNA) and protein alterations in HeLa cells infected with type 4 adenovirus. J Exp Med. 1959 Apr 1;109(4):407–422. doi: 10.1084/jem.109.4.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GINSBERG H. S., DIXON M. K. Nucleuc acid synthesis in types 4 and 5 adenovirus-infected HeLa cells. J Exp Med. 1961 Feb 1;113:283–299. doi: 10.1084/jem.113.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GREEN M. Biochemical studies on adenovirus multiplication. 1. Stimulation of phosphorus incorporation into deoxyribonucleic acid and ribouncleic acid. Virology. 1959 Nov;9:343–358. doi: 10.1016/0042-6822(59)90127-8. [DOI] [PubMed] [Google Scholar]
  14. GREEN M. Studies on the biosynthesis of viral DNA. Cold Spring Harb Symp Quant Biol. 1962;27:219–235. doi: 10.1101/sqb.1962.027.001.022. [DOI] [PubMed] [Google Scholar]
  15. GROS F., HIATT H., GILBERT W., KURLAND C. G., RISEBROUGH R. W., WATSON J. D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature. 1961 May 13;190:581–585. doi: 10.1038/190581a0. [DOI] [PubMed] [Google Scholar]
  16. HANDSCHUMACHER R. E. Orotidylic acid decarboxylase: inhibition studies with azauridine 5'-phosphate. J Biol Chem. 1960 Oct;235:2917–2919. [PubMed] [Google Scholar]
  17. HOROWITZ J., CHARGAFF E. Massive incorporation of 5-fluorouracil into a bacterial ribonucleic acid. Nature. 1959 Oct 17;184:1213–1215. doi: 10.1038/1841213a0. [DOI] [PubMed] [Google Scholar]
  18. HOROWITZ J., SAUKKONEN J. J., CHARGAFF E. Effects of fluoropyrimidines on the synthesis of bacterial proteins and nucleic acids. J Biol Chem. 1960 Nov;235:3266–3272. [PubMed] [Google Scholar]
  19. JEENER R., HAMERS-CASTERMAN C., MAIRESSE N. On the inhibition of phage production by 2-thiouracil and 8-azaguanine in an induced lysogenic Bacillus megaterium. Biochim Biophys Acta. 1959 Sep;35:166–179. doi: 10.1016/0006-3002(59)90345-2. [DOI] [PubMed] [Google Scholar]
  20. JEENER R. The action of ribonuclease on phage protein synthesis by an induced lysogenic Bacillus megaterium culture. Biochim Biophys Acta. 1959 Mar;32(1):106–116. doi: 10.1016/0006-3002(59)90558-x. [DOI] [PubMed] [Google Scholar]
  21. KJELLEN L. A study of adenovirus-host cell system by the plaque technique. Virology. 1961 Jun;14:234–239. doi: 10.1016/0042-6822(61)90198-2. [DOI] [PubMed] [Google Scholar]
  22. KJELLEN L. Effect of 5-halogenated pyrimidines on cell proliferation and adenovirus multiplication. Virology. 1962 Sep;18:64–70. doi: 10.1016/0042-6822(62)90177-0. [DOI] [PubMed] [Google Scholar]
  23. LOGAN R., DAVIDSON J. N. Heterogeneity of nuclear RNA. Biochim Biophys Acta. 1957 Apr;24(1):196–196. doi: 10.1016/0006-3002(57)90164-6. [DOI] [PubMed] [Google Scholar]
  24. MATTHAEI J. H., NIRENBERG M. W. Characteristics and stabilization of DNAase-sensitive protein synthesis in E. coli extracts. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1580–1588. doi: 10.1073/pnas.47.10.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. NAONO S., GROS F. [Effects of an analogue of a nucleic base on the biosynthesis of bacterial proteins. Changes in the globular composition of proteins]. C R Hebd Seances Acad Sci. 1960 May 23;250:3527–3529. [PubMed] [Google Scholar]
  26. NIRENBERG M. W., MATTHAEI J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588–1602. doi: 10.1073/pnas.47.10.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. REICH E., FRANKLIN R. M., SHATKIN A. J., TATUM E. L. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science. 1961 Aug 25;134(3478):556–557. doi: 10.1126/science.134.3478.556. [DOI] [PubMed] [Google Scholar]
  28. REISSIG M., KAPLAN A. S. The morphology of noninfective pseudorabies virus produced by cells treated with 5-fluorouracil. Virology. 1962 Jan;16:1–8. doi: 10.1016/0042-6822(62)90196-4. [DOI] [PubMed] [Google Scholar]
  29. SALZMAN N. P., SEBRING E. D. Utilization of precurosors for nucleic acid synthesis by human cell cultures. Arch Biochem Biophys. 1959 Sep;84:143–150. doi: 10.1016/0003-9861(59)90563-6. [DOI] [PubMed] [Google Scholar]
  30. SCHERRER K., DARNELL J. E. Sedimentation characteristics of rapidly labelled RNA from HeLa cells. Biochem Biophys Res Commun. 1962 Jun 4;7:486–490. doi: 10.1016/0006-291x(62)90341-8. [DOI] [PubMed] [Google Scholar]
  31. SIBATANI A., DE KLOET S. R., ALLFREY V. G., MIRSKY A. E. Isolation of a nuclear RNA fraction resembling DNA in its base composition. Proc Natl Acad Sci U S A. 1962 Mar 15;48:471–477. doi: 10.1073/pnas.48.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. TAMM I., NEMES M. M., OSTERHOUT S. On the role of ribonucleic acid in animal virus synthesis. I. Studies with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. J Exp Med. 1960 Mar 1;111:339–349. doi: 10.1084/jem.111.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. VOLKIN E., ASTRACHAN L. Phosphorus incorporation in Escherichia coli ribo-nucleic acid after infection with bacteriophage T2. Virology. 1956 Apr;2(2):149–161. doi: 10.1016/0042-6822(56)90016-2. [DOI] [PubMed] [Google Scholar]
  34. VOLKIN E. Synthesis and function of the DNA-like RNA. Fed Proc. 1962 Jan-Feb;21:112–119. [PubMed] [Google Scholar]
  35. Volkin E. THE FUNCTION OF RNA IN T2-INFECTED BACTERIA. Proc Natl Acad Sci U S A. 1960 Oct;46(10):1336–1349. doi: 10.1073/pnas.46.10.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. WASSERMANN F. E. The inactivation of adenoviruses by ultraviolet irradiation and nitrous acid. Virology. 1962 Jun;17:335–341. doi: 10.1016/0042-6822(62)90124-1. [DOI] [PubMed] [Google Scholar]
  37. WILCOX W. C., GINSBERG H. S. Protein synthesis in type 5 adenovirus-infected cells. Effect of p-flourophenylalanine on synthesis of protein. nucleic acids, and infectious virus. Virology. 1963 Jun;20:269–280. doi: 10.1016/0042-6822(63)90115-6. [DOI] [PubMed] [Google Scholar]
  38. WILCOX W. C., GINSBERG H. S. Purification and immunological characterization of types 4 and 5 adenovirus-soluble antigens. Proc Natl Acad Sci U S A. 1961 Apr 15;47:512–526. doi: 10.1073/pnas.47.4.512. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES