Abstract
Wachsman, J. T. (University of Illinois, Urbana), S. Kemp, and L. Hogg. Thymineless death in Bacillus megaterium. J. Bacteriol. 87:1079–1086. 1964.—Strain KM:T−, a thymine auxotroph of Bacillus megaterium strain KM, rapidly loses the ability to multiply when incubated in the absence of thymine, on an otherwise sufficient medium. At 37 C, there is a lag of approximately 60 min, prior to the onset of exponential death (decrease of 1 decade per 50 min). The extent of the decrease in viable count varies from 4 to 5 decades after 5 hr of starvation. The cells die more slowly at 30 C (decrease of 1 decade per 120 min) after a lag of approximately 90 min. Thymine starvation permits substantial net ribonucleic acid (RNA) and protein synthesis, but only slight deoxyribonucleic acid synthesis. In contrast with the changes occurring at 30 C, thymineless death at 37 C is eventually accompanied by a rapid hydrolysis of RNA and by cell lysis. Chloramphenicol inhibits thymineless death at 37 C. Strain T−R1, a derivative of strain KM:T−, undergoes a very low rate of thymineless death at 37 C (decrease of 1 decade per 240 min). Neither hydrolysis of RNA nor cell lysis occurs during 8 hr of thymine starvation. Strain KM:T−H− (doubly auxotrophic for thymidine and histidine) requires histidine for maximal thymineless death at 37 C. Preincubation of this strain on the basal medium supplemented with thymidine alone enables the population to become increasingly immune to subsequent thymineless death.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARNER H. D., COHEN S. S. The induction of thymine synthesis by T2 infection of a thymine requiring mutant of Escherichia coli. J Bacteriol. 1954 Jul;68(1):80–88. doi: 10.1128/jb.68.1.80-88.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARNER H. D., COHEN S. S. The isolation and properties of amino acid requiring mutants of a thymineless bacterium. J Bacteriol. 1957 Sep;74(3):350–355. doi: 10.1128/jb.74.3.350-355.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BILLEN D. Alterations in the radiosensitivity of Escherichia coli through modification of cellular macromolecular components. Biochim Biophys Acta. 1959 Jul;34:110–116. doi: 10.1016/0006-3002(59)90238-0. [DOI] [PubMed] [Google Scholar]
- BLUMSOM N. L., BADDILEY J. Thymidine diphosphate mannose and thymidine diphosphate rhamnose in Streptomyces grieus. Biochem J. 1961 Oct;81:114–124. doi: 10.1042/bj0810114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. S., Barner H. D. STUDIES ON UNBALANCED GROWTH IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1954 Oct;40(10):885–893. doi: 10.1073/pnas.40.10.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUNN D. B., SMITH J. D. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J. 1958 Apr;68(4):627–636. doi: 10.1042/bj0680627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GALLANT J. A. Sublethal thymineless damage in Escherichia coliB3. Biochim Biophys Acta. 1962 Aug 20;61:302–304. [PubMed] [Google Scholar]
- GALLANT J., SUSKIND S. R. Relationship between thymineless death and ultraviolet inactivation in Escherichia coli. J Bacteriol. 1961 Aug;82:187–194. doi: 10.1128/jb.82.2.187-194.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GALLANT J., SUSKIND S. R. Ribonucleic acid synthesis and thymineless death. Biochim Biophys Acta. 1962 May 14;55:627–638. doi: 10.1016/0006-3002(62)90841-7. [DOI] [PubMed] [Google Scholar]
- GLASER L., KORNFELD S. The enzymatic synthesis of thymidine-linked sugars. II. Thymidine diphosphate L-rhamnose. J Biol Chem. 1961 Jun;236:1795–1799. [PubMed] [Google Scholar]
- Gold M., Hurwitz J., Anders M. THE ENZYMATIC METHYLATION OF RNA AND DNA, II. ON THE SPECIES SPECIFICITY OF THE METHYLATION ENZYMES. Proc Natl Acad Sci U S A. 1963 Jul;50(1):164–169. doi: 10.1073/pnas.50.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KELLENBERGER E., LARK K. G., BOLLE A. Amino acid dependent control of DNA synthesis in bacteria and vegetative phage. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1860–1868. doi: 10.1073/pnas.48.10.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KORN D., WEISSBACH A. Thymineless induction in Escherichia coli K12 (lambda). Biochim Biophys Acta. 1962 Nov 26;61:775–790. doi: 10.1016/0926-6550(62)90060-9. [DOI] [PubMed] [Google Scholar]
- KORNFELD S., GLASER L. The enzymic synthesis of thymidine-linked sugars. I. Thymidine diphosphate glucose. J Biol Chem. 1961 Jun;236:1791–1794. [PubMed] [Google Scholar]
- KORNFELD S., GLASER L. The enzymic synthesis of thymidine-linked sugars. IV. Thymidine diphosphate aminosugars. Biochim Biophys Acta. 1962 Jan 1;56:184–185. doi: 10.1016/0006-3002(62)90548-6. [DOI] [PubMed] [Google Scholar]
- LUZZATI D., REVEL C. [Lethal effect of thymine deficiency: state of desoxyribonucleic acid during this deficiency]. Biochim Biophys Acta. 1962 Aug 20;61:305–306. [PubMed] [Google Scholar]
- MAALOE O., HANAWALT P. C. Thymine deficiency and the normal DNA replication cycle. I. J Mol Biol. 1961 Apr;3:144–155. doi: 10.1016/s0022-2836(61)80041-7. [DOI] [PubMed] [Google Scholar]
- MANGALO R., WACHSMAN J. T. Effect of 8-azaguanine on growth and viability of Bacillus megaterium. J Bacteriol. 1962 Jan;83:27–34. doi: 10.1128/jb.83.1.27-34.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MELECHEN N. E., SKAAR P. D. The provocation of an early step of induction by thymine deprivation. Virology. 1962 Jan;16:21–29. doi: 10.1016/0042-6822(62)90198-8. [DOI] [PubMed] [Google Scholar]
- MENNIGMANN H. D., SZYBALSKI W. Molecular mechanism of thymine-less death. Biochem Biophys Res Commun. 1962 Nov 27;9:398–404. doi: 10.1016/0006-291x(62)90023-2. [DOI] [PubMed] [Google Scholar]
- NAKADA D. Involvement of newly-formed protein in the syntheses of deoxyibonucleic acid. Biochim Biophys Acta. 1960 Nov 4;44:241–244. doi: 10.1016/0006-3002(60)91559-6. [DOI] [PubMed] [Google Scholar]
- NAKADA D. Thymine starvation and beta-galactosidase synthesis. Biochim Biophys Acta. 1962 Apr 2;55:505–511. doi: 10.1016/0006-3002(62)90983-6. [DOI] [PubMed] [Google Scholar]
- OKADA T., HOMMA J., SONOHARA H. Improved method for obtaining thymineless mutants of Escherichia coli and Salmonella typhimurium. J Bacteriol. 1962 Sep;84:602–603. doi: 10.1128/jb.84.3.602-603.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OKADA T., YANAGISAWA K., RYAN F. J. A method for securing thymineless mutants from strains of E. coli. Z Vererbungsl. 1961;92:403–412. doi: 10.1007/BF00890061. [DOI] [PubMed] [Google Scholar]
- OKAGAKI H., TSUBOTA Y., SIBATANI A. Unbalanced growth and bacterial death in thymine-deficient and ultraviolet irradiated Escherichia coli. J Bacteriol. 1960 Dec;80:762–771. doi: 10.1128/jb.80.6.762-771.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SALTON M. R., PAVLIK J. G. Studies of the bacterial cell wall. VI. Wall composition and sensitivity to lysozyme. Biochim Biophys Acta. 1960 Apr 22;39:398–407. doi: 10.1016/0006-3002(60)90191-8. [DOI] [PubMed] [Google Scholar]
- TINELLI R., MICHELSON A. M., STROMINGER J. L. EPIMERIZATION OF THYMIDINE DIPHOSPHATE GLUCOSE IN BACTERIAL EXTRACTS. J Bacteriol. 1963 Aug;86:246–251. doi: 10.1128/jb.86.2.246-251.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wachsman J. T., Kemp S., Hogg L. Comparative effects of 5-fluorouracil on strains of Bacillus megaterium. J Bacteriol. 1964 May;87(5):1011–1018. doi: 10.1128/jb.87.5.1011-1018.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]