Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 May;87(5):1140–1146. doi: 10.1128/jb.87.5.1140-1146.1964

CARBOHYDRATE AND LIPID CONTENT OF RADIATION-RESISTANT AND -SENSITIVE STRAINS OF ESCHERICHIA COLI1

E E Woodside a,2, W Kocholaty a
PMCID: PMC277159  PMID: 5334969

Abstract

Woodside, E. E. (U.S. Army Medical Research Laboratory, Fort Knox, Ky.), and W. Kocholaty. Carbohydrate and lipid content of radiation-resistant and -sensitive strains of Escherichia coli. J. Bacteriol. 87:1140–1146. 1964.—Total lipid contents of acetate minimal medium cultures of Escherichia coli, strains B, B/r, and Bs, were not significantly different when identical pretreatment and extraction procedures were compared. Wide variations in intracellular hexose and pentose derivatives of E. coli B, B/r, and Bs were induced by changes in carbon and nitrogen sources and by changes in the growth phases. The three strains produced more intracellular carbohydrate when grown in nutrient broth-glucose medium than when grown in unsupplemented nutrient broth. Acetate minimal medium cultures of the radiation-sensitive mutant, E. coli Bs, contained the least, and the radiation-resistant mutant, E. coli B/r the largest, amounts of intracellular hexoses. Environmental conditions which increased the radiation resistance of E. coli B/r were similar to the environmental conditions which favored increased intracellular hexose accumulation. After X ray of E. coli B/r, considerable amounts of hexoses and pentoses were released into the growth medium. Alterations in hexose distribution patterns of X-rayed E. coli B/r preceded alterations in pentose distribution patterns. Prolonged postirradiation incubation resulted in a net synthesis of extracellular hexose, with concomitant loss of intracellular hexose accumulation.

Full text

PDF
1140

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADLER H. I., ENGEL M. S. Factors influencing the survival of bacteria after exposure to ionizing radiation. J Cell Comp Physiol. 1961 Dec;58(3):95–105. doi: 10.1002/jcp.1030580410. [DOI] [PubMed] [Google Scholar]
  2. BILLEN D., STREHLER B. L., STAPLETON G. E., BRIGHAM E. Postirradiation release of adenosine triphosphate from Escherichia coli B/r1. Arch Biochem Biophys. 1953 Mar;43(1):1–10. doi: 10.1016/0003-9861(53)90078-2. [DOI] [PubMed] [Google Scholar]
  3. BILLEN D., VOLKIN E. The effect of x rays on the macromolecular organization of Escherichia coli. J Bacteriol. 1954 Feb;67(2):191–197. doi: 10.1128/jb.67.2.191-197.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CEDERGREN B., HOLME T. On the glycogen in Escherichia coli B; electron microscopy of ultrathin sections of cells. J Ultrastruct Res. 1959 Oct;3:70–73. doi: 10.1016/s0022-5320(59)80016-2. [DOI] [PubMed] [Google Scholar]
  5. Dawson A. I. Bacterial Variations Induced by Changes in the Composition of Culture Media. J Bacteriol. 1919 Mar;4(2):133–148. doi: 10.1128/jb.4.2.133-148.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HILL R. F., SIMSON E. A study of radiosensitive and radioresistant mutants of Escherichia coli strain B. J Gen Microbiol. 1961 Jan;24:1–14. doi: 10.1099/00221287-24-1-1. [DOI] [PubMed] [Google Scholar]
  7. HOLLAENDER A. Intersociety symposium on radiation protection and recovery. Studies on microorganisms. Fed Proc. 1960 Jul;19:562–563. [PubMed] [Google Scholar]
  8. HOLLAENDER A., STAPLETON G. E., MARTIN F. L. X-ray sensitivity of E. coli as modified by oxygen tension. Nature. 1951 Jan 20;167(4238):103–104. doi: 10.1038/167103a0. [DOI] [PubMed] [Google Scholar]
  9. HOLME T., CEDERGREN B. Demonstration of intracellular polysaccharide in Escherichia coli by electron microscopy and by cytochemical methods. Acta Pathol Microbiol Scand. 1961;51:179–186. doi: 10.1111/j.1699-0463.1961.tb00357.x. [DOI] [PubMed] [Google Scholar]
  10. KANFER J. N., KENNEDY E. P. Synthesis of phosphatidylserine by Escherichia coli. J Biol Chem. 1962 Jan;237:PC270–PC271. [PubMed] [Google Scholar]
  11. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PHILLIPS G. O. Radiation chemistry of carbohydrates. Adv Carbohydr Chem. 1961;16:13–58. doi: 10.1016/s0096-5332(08)60258-1. [DOI] [PubMed] [Google Scholar]
  13. POLLARD E., VOGLER C. Radiation action on some metabolic processes in Escherichia coli. Radiat Res. 1961 Jul;15:109–119. [PubMed] [Google Scholar]
  14. SABLE H. Z., CASSISI E. E. Biosynthesis and biosynthetic pathways of pentoses in Escherichia coli. J Bacteriol. 1962 Dec;84:1169–1172. doi: 10.1128/jb.84.6.1169-1172.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SPERRY W. M. Lipide analysis. Methods Biochem Anal. 1955;2:83–111. doi: 10.1002/9780470110188.ch3. [DOI] [PubMed] [Google Scholar]
  16. STAPLETON G. E. Variations in the sensitivity of escherichia coli to ionizing radiations during the growth cycle. J Bacteriol. 1955 Oct;70(4):357–362. doi: 10.1128/jb.70.4.357-362.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stapleton G. E., Engel M. S. CULTURAL CONDITIONS AS DETERMINANTS OF SENSITIVITY OF ESCHERICHIA COLI TO DAMAGING AGENTS. J Bacteriol. 1960 Oct;80(4):544–551. doi: 10.1128/jb.80.4.544-551.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WOODSIDE E. E., GOUCHER C. R., KOCHOLATY W. Postirradiation responses of ultraviolet irradiated Escherichia coli. J Bacteriol. 1960 Aug;80:252–258. doi: 10.1128/jb.80.2.252-258.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WOODSIDE E. E., KOCHOLATY W. Carbohydrates of human and bovine platelets. Blood. 1960 Aug;16:1173–1183. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES