Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2010 Jan 15.
Published in final edited form as: Chaos Solitons Fractals. 2009 Jan 15;39(1):399–406. doi: 10.1016/j.chaos.2007.04.011

The applications of a higher-dimensional Lie algebra and its decomposed subalgebras

Zhang Yu 1,*, Yufeng Zhang 1
PMCID: PMC2771739  NIHMSID: NIHMS103300  PMID: 20084092

Abstract

With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra (6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra (6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras (6) and E is used to directly construct integrable couplings.

Keywords: Lie algebras, Hamiltonian, Integrable coupling

1 Introduction

Integrable couplings were proposed in view of the Virasoro algebra and the soliton theory, a few ways to construct integrable couplings were presented by use of perturbations[1-3]. Tu Guizhang once proposed a simple and efficient method for generating integrable couplings and Hamiltonian of solition equations with infinite dimensions in Ref[4], Ma Wenxiu called the method as Tu scheme. By making use of Tu scheme, some well-known integrable hierarchies and corresponding Hamiltonian systems were worked out [5-18]. Its basis is the known algebra as follows:

{h=(1001),e=(0100),f=(0010),[h,e]=2e,[h(m),f]=2f,[e,f]=h, (1)

Li[19] presented the Lax pair from the self-dual Yang-Mills equation[15]

{φx=Mφ,φt=P(λ)φy+Nφ. (2)

whose compatibility is the following (2 + 1)-dimensional partial-differential equation hierarchy

MtNx+[M,N]P(λ)My=0, (3)

where P(λ) =α0 +α1λ + …, λ is a spectral parameter. If let P(λ) = 0, then ()reduce to the standard zero curvature equation

MtNx+[M,N]=0 (4)

In this paper, with the help of invertible linear transformations and the known Lie algebras, we construct a higher-dimensional 6 × 6 matrix Lie algebra (6), the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy is obtained under the framework of the (2 + 1)-dimensional partial-differential equation hierarchy, then we obtain its Hamiltonian structure by using the quadratic-form identity [9]. Finally, In Ref[19,20], a decomposed Lie algebra E from (6) is presented whose two subalgebras are denoted by E1 and E2, which satisfy E =E1E2, [E1,E2] ⊂E2. We also require the closure between E1 and E2 under the matrix multiplication E1E2, E2E1E2. With the help of E, a discrete lattice Lax pair is given from which a discrete lattice integrable coupling system of an integrable hierarchy is obtained.

2 The application of a higher-dimensional Lie algebra

We construct a new higher-dimensional 6 × 6 matrix Lie algebra (6) as follows[15]

{h1=(h000h000h),h2=(e000e000e),h3=(f000f000f),h4=(0h000h000),h5=(0e000e000),h6=(0f000f000),h7=(00h000000),h8=(00e000000),h9=(00f000000),[h1,h2]=2h2,[h1,h3]=2h3,[h2,h3]=h1,[h1,h4]=0,[h1,h5]=2h5,[h1,h6]=2h6,[h1,h7]=0,[h1,h8]=2h8,[h1,h9]=2h9,[h2,h5]=0,[h2,h4]=2h5,[h2,h6]=h4,[h2,h7]=2h8,[h2,h8]=0,[h2,h9]=h7,[h3,h4]=2h6,[h3,h5]=h4,[h3,h6]=0,[h3,h7]=2h9,[h3,h8]=h7,[h3,h9]=0,[h4,h5]=2h8,[h4,h6]=2h9,[h4,h7]=[h4,h8]=[h4,h9]=0,[h5,h6]=h7,[h5,h7]=[h5,h8]=[h5,h9]=[h6,h7]=[h6,h8]=[h6,h9]=[h7,h8]=[h7,h9]=[h8,h9]=0.

It is easy to verify that sμ(6)=span{hi}i=19is a Lie algebra. Its resulting loop algebra sμ̃(6) with powers of λ being λ2n, λ2n+1 is given by

{h1(n)=h1λ2n,h2(n)=h2λ2n+1,h3(n)=h3λ2n+1,h4(n)=h4λ2n,h5(n)=h5λ2n+1h6(n)=h6λ2n+1,h7(n)=h7λ2n,h8(n)=h8λ2n+1,h9(n)=h9λ2n+1, (5)

with a commutative operation defined as

{[h1(m),h2(n)]=2h2(m+n),[h1(m),h3(n)]=2h3(m+n),[h2(m),h3(n)]=h1(m+n+1),[h1(m),h4(n)]=0,[h1(m),h5(n)]=2h5(m+n),[h1(m),h6(n)]=2h6(m+n),[h1(m),h7(n)]=0,[h1(m),h8(n)]=2h8(m+n),[h1(m),h9(n)]=2h9(m+n),[h2(m),h5(n)]=0,[h2(m),h4(n)]=2h5(m+n),[h2(m),h6(n)]=h4(m+n+1),[h2(m),h7(n)]=2h8(m+n),[h2(m),h8(n)]=0,[h2,h9(n)]=h7(m+n+1),[h3(m),h4(n)]=2h6(m+n),[h3(m),h5(n)]=h4(m+n+1),[h3(m),h6(n)]=0,[h3(m),h7(n)]=2h9(m+n),[h3(m),h8(n)]=h7(m+n+1),[h3(m),h9(n)]=0,[h4(m),h5(n)]=2h8(m+n),[h4(m),h6(n)]=2h9(m+n),[h4(m),h7(n)]=[h4(m),h8(n)]=[h4(m),h9(n)]=0,[h5(m),h6(n)]=h7(m+n+1),[h5(m),h7(n)]=[h5(m),h8(n)]=[h5(m),h9(n)]=[h6(m),h7(n)]=[h6(m),h8(n)]=[h6(m),h9]=0,[h7(m),h8(n)]=[h7(m),h9(n)]=[h8(m),h9(n)]=0,m,nZ,n=0,±1,±2 (6)

Consider an isospectral problem

φx=Mφ,M=h1(1)+u1h2(0)+u2h3(0)+u3h5(0)+u4h6(0)+u5h8(0)+u6h9(0). (7)

Denoting V = Σm≥0(amh1(−m) + bmh2(−m) + cmh3(−m) + dmh4(−m) + emh5(−m) + fmh6(−m) + gmh7(−m) + kmh8(−m) + lmh9(−m)), then the stationary linear equation

Nx=[M,N] (8)

yields

{amx=u1cm+1u2bm+1,bmx=2bm+12u1amcmx=2cm+1+2u2amdmx=u2em+1+u1fm+1+u3cm+1u4bm+1,emx=2em+12u1dm2u3am,fmx=2fm+1+2u2dm+2u4am,gmx=u1lm+1u2km+1+u3fm+1u4em+1+u5cm+1u6bm+1,kmx=2km+12u1gm2u3dm2u5am,lmx=2lm+1+2u2gm+2u4dm+2u6am,a0=α=const,b0=c0=d0=e0=f0=g0=k0=l0=0,a1=α2u1u2,b1=αu1,c1=αu2,d1=0,e1=αu3,f1=αu4,g1=0,k1=αu5,l1=αu6. (9)

Note

{N+(n)=m=0n(amh1(nm)bmh2(nm)+cmh3(nm)+dmh4(nm)+emh5(nm)+fmh6(nm)+gmh7(nm)+kmh8(nm)+lmh9(nm),N(n)=λnNN+(n),

then Eq.(8) can be written as

N+x(n)+[M,N+(n)]=Nx(n)[M,N(n)]. (10)

a direct calculation reads

N+x(n)+[M,N+(n)]=anxh1(0)2bn+1h2(0)+2cn+1h3(0)dnxh4(0)2en+1h5(0)+2fn+1h6(0)gnxh7(0)2kn+1h8(0)+2ln+1h9(0).

Taking V(n)=V+(n)+Δn, with Δn = −anh1(0) − dnh4(0) − gnh7(0), then we obtain that

N+x(n)+[M,N+(n)]=(2bn+1+2u1an)h2(0)+(2cn+12u2an)h3(0)(2em+12u1dm2u3am)h5(0)(2fm+1+2u2dm+2u4am)h6(0)knxh8(0)lnxh9(0)=bnxh2(0)cnxh3(0)enxh5(0)fnxh6(0)knxh8(0)lnxh9(0).

Thus, the (2 + 1)-dimensional partial-differential equation hierarchy

MtNx(n)+[M,N(n)]My=0, (11)

admits the following solution

(u1u2u3u4u5u6)ty=(bnxcnxenxfnxknxlnx)=(00000000000000000000000000)(cn+fn+lnbn+en+kncn+fnbn+encnbn)=JWn, (12)

where J is a Hamiltonian operator. According to the definition of integrable couplings, we conclude that the system (12) is a type of the (2+1)-dimensional integrable model of the KN hierarchy since taking u3 = u4 = u5 = u6 = 0, u1 = q, u2 = r, y = 0 the system (12) reduces to the KN hierarchy. In what follows, we look for the Hamiltonian structure of the system (12). We make use of the following quadratic-form identity. Let a, b(6), s-order matrix R(b) is determined by[9]

[a,b]T=(a1,a2,,a9)R(b)=aTR(b),

and constant matrix F =(fij)s×s, is determined by

F=FT,R(b)F=(R(b)F)T. (13)

We introduce quadratic-form identity functional

{a,b}=aTFb,a,bsμ(6),

then, we obtain

δδui{V,Uλ}=λγλ(λγ{V,Uui}),1il,lisaconstant (14)

where λ is a constant to be determined, we call (33) the quadratic-form identity[9]. we have

[a,b]T=aT(02b2b302b52b602b82b9b32b10b62b40b92b70b202b1b502b4b802b700002b22b302b52b6000b32b10b62b40000b102b1b502b400000002b22b3000000b32b10000000b202b1)=aTR(b).

Solving the matrix equation FT = F and R(b)F = −(R(b)F)T, give rise to

F=(200200200001001001010010010200200000001001000010010000200000000001000000010000000).

In order to get the Hamiltonian structure, Let

{φx=Mφ,M=(λ2,u1λ,u2λ,0,u3λ,u4λ,0,u5λ,u6λ)Tφt=Nnφ+φy,Nn=m=0n(am,λbm,λcm,dm,λem,λfm,gm,λkm,λlm)Tλ2m(an,0,0,dn,0,0,gn,0,0)T.

In terms of (13), it is easy to compute that

{N,Mu1}=λ2(c+f+l),{N,Mu2}=λ2(b+e+k),{N,Mu3}=λ2(c+f),{N,Mu4}=λ2(b+e),{N,Mu5}=λ2c,{N,Mu6}=λ2b,

{N,Mλ}=2λ(2a+2d+2g)+u1λ(c+f+l)+u2λ(b+e+k)+u3λ(c+f)+u4λ(b+e)+u5λc+u6λb where a=m0amλ2m,b=m0bmλ2m, … Substituing the above formulae into the quadratic identity, comparison of the coefficient of λ−2n+1 yields

δδu(4an+4dn+4gn+u1(cn+fn+ln)+u2(bn+en+kn)+u3(cn+fn)+u4(bn+en)+u5cn+u6bn)=(γ2n+2)(cn+fn+lnbn+en+kncn+fnbn+encnbn).

Taking n=1 gives γ = 0. Therefore,

{δHnδu=Wn,Hn=4an+4dn+4gn+u1(cn+fn+ln)+u2(bn+en+kn)+u3(cn+fn)+u4(bn+en)+u5cn+u6bn22n. (15)

Therefore, we obtain the Hamiltonian structure of the integrable coupling (12)

uty=(u1u2u3u4u5u6)ty=JδHnδu (16)

Remark 1

In the paper, we construct a higher-dimensional 6 × 6 matrix Lie algebra (6), which can obtain the integrable hierarchy with more-potential functions and its Hamiltonian structure. The method also can be used to generalize other integrable hierarchies, such as TC hierarchy, BPT hierarchy, Burgers hierarchy, etc.

3 A decomposed Lie algebra E from the Lie algebra (6)

Decompose h1, h4, h7 in (6) into the elements e1, e2, e5, e6, e9, e10,, we have

e1=(h1000h1000h1),e2=(h2000h2000h2),e3=(e000e000e),e4=(f000f000f),e5=(0h1000h1000),e6=(0h2000h2000)e7=(0e000e000),e8=(0f000f000),e9=(00h1000000),e10=(00h2000000),e11=(00e000000),e12=(00f000000).

Where h1=(1000),h2=(0001), it is easy to verify that E is a Lie algebra. Denote E1 = span{e1, e2, e3, e4}, E2 = span{e5, e6, e7, e8, e9, e10, e11, e12}, we also see that

E=E1E2,[E1,E2]E2.

Observe that E1 and E2 are closed under the following matrix multiplication

e1e1=e1,e2e2=e2,e5e5=e9,e6e6=e10,e1e2=e2e1=e3e3=e4e4=e7e7=e8e8=e9e9=e10e10=0,e1e10=e10e1=e11e1=e1e11=e1e12=e12e1=e4e8=e8e4=e4e12=e12e4=0,,e2e5=e5e2=0,e2e6=e6e2=e6,e2e9=e9e2=e2e11=e11e2=0,{e1e3=e3,e3e1=0,{e1e4=0,e4e1=e4,{e1e7=e7,e7e1=0,{e1e8=0,e8e1=e8,e1e5=e5e1=e5,e1e6=e6e1=0,e1e9=e9e1=e9,e3e7=e7e3=0,{e2e3=0,e3e2=e3,{e2e4=e4,e4e2=0,{e2e7=0,e7e2=e7,{e2e8=e8,e8e2=0,{e2e10=0,e10e2=e10,{e2e12=e12,e12e2=0,{e3e4=e1,e4e3=e2,{e3e5=0,e5e3=e7,{e3e6=e7,e6e3=0,{e3e8=e5,e8e3=e6,{e3e9=0,e9e3=e9,{e3e10=e11,e10e3=0,{e4e5=e8,e5e4=0,{e4e6=0,e6e4=e8,{e4e7=e6,e7e4=e5,{e4e9=e12,e9e4=0,{e4e10=0,e10e4=e12,{e4e11=e10,e11e4=e9,{e5e7=e11,e7e5=0,{e5e8=0,e8e5=e12,{e6e7=0,e7e6=e11,{e6e8=e12,e8e6=0,{e7e8=e9,e8e7=e10,{e3e12=e9,e12e3=e10,e5e6=e6e5=e5e9=e9e5=e6e9=e9e6=e6e10=e10e6=e7e8=e8e7=0.

Remark 2

For computing convenience, the multiplication relations among e12 and the other elements in E are not presented here.

It is easy to see that E1E2, E2E1E2, which is key idea to generate discrete integrable couplings. In addition, the spectral matrices) are of the form

N¯=(UU¯¯1U¯¯2OUU¯¯1OOU) (17)

where U,U̿1U̿2 are 2 × 2 matrices, respectively, O stands for a 2 × 2 zero matrix. According to variuos Jordan blocks, a general classification of the Lie algebras is followed. More detailed cases will be discussed in another paper.

Consider an isospectral problem

EUn=Unψ,Un=(01rn0u1n0u4nrnλ+snu2nvnu5nu3n0001rn0u1n00rnλ+snu2nvn000001rn0000rnλ+sn) (18)
=λe2+sne21rne3+rne4++vne6+u1ne7+u2ne8+u3ne10+u4ne11+u5ne12.

Note Γ = Σi≥0(ai(e1e2) + bie3 + cie4 + fie5fie6 + gie7 + hie8 + kie9kie10 + lie11 + wie12)λia(e1e2) + be3 + ce4 + fe5fe6 + ge7 + he8 + ke9ke10 + le11 + we12,

solving the discrete stationary zero curvature equation

(EΓ)UUΓ=0 (19)

yields

{rnbm(1)1rncm=0,1rn(am(1)+am)+bm+1(1)+snbm(1)=0,rn(am(1)+am)+cm+1+sncm=0,1rncm(1)+rnbm+sn(am(1)am)+(am+1(1)-am+1)=0,bm(1)u2n+rngm(1)+1rnhmcmu1n=0,cm(1)u1nam(1)vn1rnhm(1)snfm(1)fm+1(1)rnkm(1)rngm+fm+1+snfmbmu2n+amvn=0,am(1)u1n+vnbm(1)+gm+1(1)+sngm(1)1rn(fm(1)+fm)+amu1n=0,am(1)u2n+rnfm(1)+fmrn+hm+1+snhm+vncm+amu2n=0,u5nbm(1)+u2ngm(1)+rnlm(1)+1rnwmu1nhmu4ncm=0,u4ncm(1)am(1)u3n+hm(1)u1nfm(1)vn1rnwm(1)km+1(1)snkm(1)+snkm+km+1rnlmu2ngm+u3namu5nbm+vnfm=0,u4nam(1)+bm(1)u3n+km(1)u1n+gm(1)vn1rnkm(1)+u1nfm+lm+1(1)+snlm(1)1rnkm+u4nam=0,u5nam(1)+u2nfm(1)+km(1)rn+kmrn+wm+1+snwm+fmu2n+vnhm+amu5n+cmu3n=0. (20)

Throught some deduction, it is easy to see that the second and seventh and eleventh equation in (20) can be derived from the others. Hence, the three equations are superfluous.

Noting Γ+(m)=i=0m(ai(e1e2)+bie3+cie4+fie5fie6gie7+hie8+kie9kie10+lie11+wie12)λmi=λmΓΓ(m), then Eq.(20) can be written as

(EΓ+(m))UnUnΓ+(m)=(EΓ(m))Un+UnΓ(m). (21)

A direct calculation reads

(EΓ+(m))UnUnΓ+(m)=bm+1(1)e3+cm+1e4+(am+1(1)am+1)e2+(fm+1(1)fm+1)e6gm+1(1)e7+hm+1e8+(km+1(1)km+1)e10lm+1(1)e11+wm+1e12

Take Γ(m)=Γ+(m), the discrete zero curvature equation

(Un)tm=(EΓ(m))UnUnΓ(m) (22)

generates the discrete integrable hierarchy

{(rn)tm=cm+1,(sn)tm=am+1(1)am+1,(vn)tm=fm+1(1)fm+1,(u1n)tm=gm+1(1),(u2n)tm=hm+1(u3n)tm=km+1(1)km+1,(u4n)tm=lm+1(1),(u5n)tm=wm+1. (23)

The first two equations in (23) were presented in Ref.[21]. Hence, the discrete lattice hierarchy (23) is the discrete integrable couplings of the first two equations.

Remark 3

The above example indicates a way to generate discrete integrable couplings by the Lie algebra, but there is an open problem: Could we generalize the continuous-type quadratic-form identity in [9] into the discrete-type one so that the Hamiltonian structures of the discrete integrable couplings could be obtained? which is worth studying in the future.

Footnotes

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

References

  • 1.Wen-Xiu Ma, Fuchssteiner B. Chaos, Solitons and Fractals. 1996;7:1227–1250. [Google Scholar]
  • 2.Wen-Xiu Ma. Methods Appl Anal. 2000;7:21–55. [Google Scholar]
  • 3.Wen-Xiu Ma, Fuchssteiner B. Phys Lett A. 1996;213:49–55. [Google Scholar]
  • 4.Guizhang Tu. J Math Phys. 1989;30:330. [Google Scholar]
  • 5.Yufeng Zhang. Phys Lett A. 2003;317:280. [Google Scholar]
  • 6.Engui Fan. Chaos, Solitons and Fractals. 2006;28:966–971. [Google Scholar]
  • 7.Yufeng Zhang, Honwah Tam. Communications in Nonlinear Sciennce and Numcrical Simulation. 2006.06.003, on line. [Google Scholar]
  • 8.Yufeng Zhang, Hongqing Zhang. J Math Phys. 2002;43:466–472. [Google Scholar]
  • 9.Fukui Guo, Yufenf Zhang. J Phys A. 2005;38:8537–8548. [Google Scholar]
  • 10.Yufeng Zhang. Chaos, Soliton and Fractals. 2004;21:305–310. [Google Scholar]
  • 11.Yufeng Zhang, Honwah Tam, Wei Jiang. Chaos, Solitons and Fractals. 2006;06.030, on line. [Google Scholar]
  • 12.Fukui Guo, Yufeng Zhang. J Math Phys. 2003;44:5793. [Google Scholar]
  • 13.Yufeng Zhang, Guo Xiurong. Chaos, Soliton and Fractals. 2006;27:555–559. [Google Scholar]
  • 14.Yufeng Zhang, Xiurong Guo, Hongwah Tam. Chaos, Soliton and Fractals. 2006;29:114–124. [Google Scholar]
  • 15.Yufeng Zhang, Honwah Tam, Fukui Guo. Communications in Nonlinear Sciennce and Numcrical Simulation. 2006, 07.011, on line. [Google Scholar]
  • 16.Yufeng Zhang. Chaos, Soliton and Fractals. 2006;29:114–124. [Google Scholar]
  • 17.Yufeng Zhang, Wang Yan. Phys Lett A. 2006;360:92–98. [Google Scholar]
  • 18.Yufeng Zhang, Fukui Guo. Commun, Theor Phys. 2006;46:812–818. [Google Scholar]
  • 19.Li Yishen. Shanghai: Shanghai Scientific and Technological Education Publishing House. 1999 [Google Scholar]
  • 20.Yufeng Zhang, Engui Fan, Yongqing Zhang. Phys Lett A. 2006;357:454–461. [Google Scholar]
  • 21.Haiyong Ding, Yepeng Sun, Xixiang Xu. Chaos, Soliton and Fractals. 2006;30:227–234. [Google Scholar]

RESOURCES