Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 Jun;87(6):1261–1265. doi: 10.1128/jb.87.6.1261-1265.1964

ORIGIN OF PALMITIC ACID CARBON IN PALMITATES FORMED FROM HEXADECANE-1-C14 AND TETRADECANE-1-C14 BY MICROCOCCUS CERIFICANS

W R Finnerty a,1, R E Kallio a
PMCID: PMC277197  PMID: 14188700

Abstract

Finnerty, W. R. (University of Iowa, Iowa City), and R. E. Kallio. Origin of palmitic acid carbon in palmitates formed from hexadecane-1-C14 and tetradecane-1-C14 by Micrococcus cerificans. J. Bacteriol. 87:1261–1265. 1964.—Degradation of the palmitic acid moiety of cetyl palmitate and myristyl palmitate formed from hexadecane-1-C14 and tetradecane-1-C14 by Micrococcus cerificans was carried out. The patterns of C14 labeling in palmitic acid from cetyl palmitate showed that hexadecane is oxidized at the C1 position, and cetyl alcohol and palmitic acid thus formed are directly esterified. Palmitic acid arising from tetradecane and esterified to tetradecanol appeared to have been synthesized by the addition of two carbon atoms to an existing 14-carbon atom skeleton. Considerable mixing of C14 occurred in the C1 and C2 positions of palmitic acid thus synthesized.

Full text

PDF
1261

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. EL-BAGOURY S., FLETCHER S., MORRISON R. B. Effect of chloramphenicol in maintaining the viability of Escherichia coli. Nature. 1956 Dec 29;178(4548):1467–1467. doi: 10.1038/1781467a0. [DOI] [PubMed] [Google Scholar]
  2. LYNEN F. Biosynthesis of saturated fatty acids. Fed Proc. 1961 Dec;20:941–951. [PubMed] [Google Scholar]
  3. MARTIN R. O., STUMPF P. K. Fat metabolism in higher plants. XII. alpha-Oxidation of long chain fatty acids. J Biol Chem. 1959 Oct;234:2548–2554. [PubMed] [Google Scholar]
  4. STEVENSON D. P., FINNERTY W. R., KALLIO R. E. Esters produced from n-heptadecane by Micrococcus cerificans. Biochem Biophys Res Commun. 1962 Nov 27;9:426–429. doi: 10.1016/0006-291x(62)90028-1. [DOI] [PubMed] [Google Scholar]
  5. STEWART J. E., KALLIO R. E. Bacterial hydrocarbon oxidation. II. Ester formation from alkanes. J Bacteriol. 1959 Nov;78:726–730. doi: 10.1128/jb.78.5.726-730.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. STEWART J. E., KALLIO R. E., STEVENSON D. P., JONES A. C., SCHISSLER D. O. Bacterial hydrocarbon oxidation. I. Oxidation of n-hexadecane by a gram-negative coccus. J Bacteriol. 1959 Sep;78:441–448. doi: 10.1128/jb.78.3.441-448.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. STUMPF P. K. Fat metabolism in higher plants. VIII. Saturated long chain fatty acid peroxidase. J Biol Chem. 1956 Dec;223(2):643–649. [PubMed] [Google Scholar]
  8. Stewart J. E., Finnerty W. R., Kallio R. E., Stevenson D. P. Esters from Bacterial Oxidation of Olefins. Science. 1960 Oct 28;132(3435):1254–1254. doi: 10.1126/science.132.3435.1254. [DOI] [PubMed] [Google Scholar]
  9. WEBLEY D. M., DE KOCK P. C. The metabolism of some saturated aliphatic hydrocarbons, alcohols and fatty acids by Proactinomyces opacus Jensen (Nocardia opaca Waksman & Hendrik). Biochem J. 1952 Jun;51(3):371–375. doi: 10.1042/bj0510371. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES