Abstract
Kelner, Albert (Brandeis University, Waltham, Mass.). Correlation between genetic transformability and nonphotoreactivability in Bacillus subtilis. J. Bacteriol. 87:1295–1303. 1964.—Photoreactivation after ultraviolet irradiation was studied in the transformable Bacillus subtilis SB-1. Moderate photoreactivability (maximal increase in survival due to photoreactivating light, five- to tenfold) was found in (i) noncompetent vegatative cells produced in Brain Heart Infusion broth, and in (ii) the total viable cells of a competent culture grown in special competency-producing medium and tested either just before or after transformation with deoxyribonucleic acid. However, no, or only trace, photoreactivation (maximal increase in survival, 1.5- to 2-fold) was found in that fraction of a competent culture actually able to be transformed. This nonphotoreactivability was a temporary property of transformable cells, since clones derived from them were normally photoreactivable. Nonphotoreactivability is not explained by injury to transformants caused by photoreactivating light, although transformants are killed by very large doses of light. The findings in B. subtilis strengthen the idea that transformability is generally correlated with nonphotoreactivability.
Full text
PDF![1295](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/277202/a8ca929f5205/jbacter00446-0063.png)
![1296](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/277202/9d891f02f2a2/jbacter00446-0064.png)
![1297](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/277202/df6dd8f3dbe8/jbacter00446-0065.png)
![1298](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/277202/4de7eafd22d9/jbacter00446-0066.png)
![1299](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/277202/1f31a8da26ae/jbacter00446-0067.png)
![1300](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/277202/8230fb9a291a/jbacter00446-0068.png)
![1301](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/277202/63aba73967dc/jbacter00446-0069.png)
![1302](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/277202/7c60092d4ddb/jbacter00446-0070.png)
![1303](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/277202/ea282a3efdfe/jbacter00446-0071.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BELLAMY W. D., GERMAIN M. T. An attempt to photoreactivate ultraviolet inactivated streptococci. J Bacteriol. 1955 Sep;70(3):351–352. doi: 10.1128/jb.70.3.351-352.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLISON O. A., BEISER S. M. The ultraviolet inactivation of pneumococcus transforming factor. Radiat Res. 1960 Apr;12:381–388. [PubMed] [Google Scholar]
- JAGGER J. Photoreactivation. Bacteriol Rev. 1958 Jun;22(2):99–142. doi: 10.1128/br.22.2.99-142.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JENSEN R. A., HAAS F. L. ELECTROKINETICS AND CELL PHYSIOLOGY. II. RELATIONSHIP OF SURFACE CHARGE TO ONSET OF BACTERIAL COMPETENCE FOR GENETIC TRANSFORMATION. J Bacteriol. 1963 Jul;86:79–86. doi: 10.1128/jb.86.1.79-86.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LATARJET R. Photorestauration, Katalase-Restauration und POX-Effekt bei Bakterien und Bakteriophagen. Strahlentherapie. 1956;101(4):580–598. [PubMed] [Google Scholar]
- MAHLER I., NEUMANN I. M., MARMUR J. Studies of genetic-units controlling arginine biosynthesis in Bacillus subtilis. Biochim Biophys Acta. 1963 May 28;72:69–79. [PubMed] [Google Scholar]
- NESTER E. W., STOCKER B. A. BIOSYNTHETIC LATENCY IN EARLY STAGES OF DEOXYRIBONUCLEIC ACIDTRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1963 Oct;86:785–796. doi: 10.1128/jb.86.4.785-796.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAKULA R., WALCZAK W. On the nature of competence of transformable streptococci. J Gen Microbiol. 1963 Apr;31:125–133. doi: 10.1099/00221287-31-1-125. [DOI] [PubMed] [Google Scholar]
- RAVIN A. W. The genetics of transformation. Adv Genet. 1961;10:61–163. doi: 10.1016/s0065-2660(08)60116-9. [DOI] [PubMed] [Google Scholar]
- REBEYROTTE N., LATARJET R. [Effects of non-ionizing radiation on a transforming nucleic acid of the pneumococcus]. Strahlentherapie. 1960 Jan;111:85–98. [PubMed] [Google Scholar]
- SPIZIZEN J. Genetic activity of deoxyribonucleic acid in the reconstitution of biosynthetic pathways. Fed Proc. 1959 Dec;18:957–965. [PubMed] [Google Scholar]
- STUY J. H. Photoreactivation of ultraviolet-inactivated bacilli. Biochim Biophys Acta. 1955 Jun;17(2):206–211. doi: 10.1016/0006-3002(55)90351-6. [DOI] [PubMed] [Google Scholar]
- STUY J. H. Studies on the mechanism of radiation inactivation of micro-organism. II. Photoreactivation of some bacilli and of the spores of two Bacillus cereus strains. Biochim Biophys Acta. 1956 Nov;22(2):238–240. doi: 10.1016/0006-3002(56)90145-7. [DOI] [PubMed] [Google Scholar]
- STUY J. H. Studies on the radiation inactivation of micro-organisms. IV. Photoreactivation of the intermediate stages in the transformation of Bacillus cereus spores into vegetative cells. Antonie Van Leeuwenhoek. 1956;22(4):337–349. doi: 10.1007/BF02538347. [DOI] [PubMed] [Google Scholar]
- Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]