Abstract
VanDemark, P. J. (University of South Dakota, Vermillion), and P. F. Smith. Respiratory pathways in the Mycoplasma. II. Pathway of electron transport during oxidation of reduced nicotinamide adenine dinucleotide by Mycoplasma hominis. J. Bacteriol. 88:122–129. 1964.—Unlike the flavin-terminated respiratory pathway of the fermentative Mycoplasma, the respiratory chain of the nonfermentative M. hominis strain 07 appears to be more complex, involving quinones and cytochromes in addition to flavins. In addition to reduction by reduced nicotine adenine dinucleotide (NADH) and reduced nicotine adenine dinucleotide phosphate, nonpyridine nucleotide-linked reduction of the respiratory chain of this organism occurred with succinate, lactate, and short-chained acyl coenzyme A derivatives as electron donors. Enzymes catalyzing the oxidation of NADH included an NADH oxidase, a diaphorase, a quinone reductase, and a cytochrome c reductase. The oxidation of NADH was sensitive to a variety of inhibitors, including 10−4m Atabrine, 10−3m sodium amytal, 10−5mp-chloromercuribenzoate, 10−4m antimycin A, and 10−4m potassium cyanide. The oxidase was resolved by the addition of 5% trichloroacetic acid and reactivated by the addition of flavin adenine dinucleotide but not flavin mononucleotide. The M. hominis sonic extract contained an NADH-coenzyme Q reductase. The oxidation of NADH was stimulated by the addition of either menadione or vitamin K2 (C35). The oxidase was inactivated by extraction with ether or irradiation at 360 mμ. The ether-inactivated enzyme was partially reactivated by the addition of “lipid” extract of the enzyme and coenzyme Q6. Difference spectra of the cell extracts revealed the presence of “b” and “a” type cytochromes. These cell extracts were found to contain a cyanide-and azide-sensitive cytochrome oxidase and catalase.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRODIE A. F., WEBER M. M., GRAY C. T. The role of vitamin K1 in coupled oxidative phosphorylation. Biochim Biophys Acta. 1957 Aug;25(2):448–449. doi: 10.1016/0006-3002(57)90510-3. [DOI] [PubMed] [Google Scholar]
- CASTREJON-DIEZ J., FISHER T. N., FISHER E., Jr GLUCOSE METABOLISM OF TWO STRAINS OF MYCOPLASMA LAIDLAWII. J Bacteriol. 1963 Oct;86:627–636. doi: 10.1128/jb.86.4.627-636.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DALLAM R. D., ANDERSON W. W. Vitamin K1 and oxidative phosphorylation. Biochim Biophys Acta. 1957 Aug;25(2):439–439. doi: 10.1016/0006-3002(57)90504-8. [DOI] [PubMed] [Google Scholar]
- DE BERNARD B. Studies on the terminal electron transport system. V. Extraction of a soluble DPNH-cytochrome c reductase from the electron transport particle. Biochim Biophys Acta. 1957 Mar;23(3):510–515. doi: 10.1016/0006-3002(57)90370-0. [DOI] [PubMed] [Google Scholar]
- GILL J. W. Culture and metabolism of Mycoplasma gallisepticum. J Bacteriol. 1962 Feb;83:213–218. doi: 10.1128/jb.83.2.213-218.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN D. E., FLEISCHER S. THE ROLE OF LIPIDS IN MITOCHONDRIAL ELECTRON TRANSFER AND OXIDATIVE PHOSPHORYLATION. Biochim Biophys Acta. 1963 Oct 22;70:554–582. doi: 10.1016/0006-3002(63)90793-5. [DOI] [PubMed] [Google Scholar]
- HATEFI Y., LESTER R. L., CRANE F. L., WIDMER C. Studies on the electron transport system. XVI. Enzymic oxidoreduction reactions of coenzyme Q. Biochim Biophys Acta. 1959 Feb;31(2):490–501. doi: 10.1016/0006-3002(59)90025-3. [DOI] [PubMed] [Google Scholar]
- KANDLER O., ZEHENDER C., MULLER J. Weitere Untersuchungen über den Atmungsstoffwechsel von Proteus vulgaris, dessen stabiler L-Phase und der pleuropneumonie-ähnlichen Organismen. Arch Mikrobiol. 1956;24(3):209–218. [PubMed] [Google Scholar]
- KASHKET E. R., BRODIE A. F. Oxidative phosphorylation in fractionated bacterial systems. X. Different roles for the natural quinones of Escherichia coli W in oxidative metabolism. J Biol Chem. 1963 Jul;238:2564–2570. [PubMed] [Google Scholar]
- LECCE J. G., MORTON H. E. Metabolic studies on three strains of Pleuropneumonia-like organisms isolated from man. J Bacteriol. 1954 Jan;67(1):62–68. doi: 10.1128/jb.67.1.62-68.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REDFEARN E. R., PUMPHREY A. M., FYNN G. H. The mechanism of reactivation of enzyme systems in mitochondrial preparations treated with organic solvents. Biochim Biophys Acta. 1960 Nov 18;44:404–415. doi: 10.1016/0006-3002(60)91596-1. [DOI] [PubMed] [Google Scholar]
- REDFEARN E. R., PUMPHREY A. M. The kinetics of ubiquinone reactions in heart-muscle preparations. Biochem J. 1960 Jul;76:64–71. doi: 10.1042/bj0760064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RODWELL A. W., RODWELL E. S. The breakdown of carbohydrates by Asterococcus mycoides, the organism of bovine pleuropneumonia. Aust J Biol Sci. 1954 Feb;7(1):18–30. [PubMed] [Google Scholar]
- SCHIMKE R. T., BARILE M. F. ARGININE METABOLISM IN PLEUROPNEUMONIA-LIKE ORGANISMS ISOLATED FROM MAMMALIAN CELL CULTURE. J Bacteriol. 1963 Aug;86:195–206. doi: 10.1128/jb.86.2.195-206.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMITH L. A study of some oxidative enzymes of baker's yeast. Arch Biochem Biophys. 1954 Jun;50(2):285–298. doi: 10.1016/0003-9861(54)90044-2. [DOI] [PubMed] [Google Scholar]
- SMITH P. F. Amino acid metabolism by pleuropneumonialike organisms. I. General catabolism. J Bacteriol. 1955 Nov;70(5):552–556. doi: 10.1128/jb.70.5.552-556.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMITH P. F. Amino acid metabolism of PPLO. Ann N Y Acad Sci. 1960 Jan 15;79:543–550. doi: 10.1111/j.1749-6632.1960.tb42721.x. [DOI] [PubMed] [Google Scholar]
- SMITH S. L., VANDEMARK P. J., FABRICANT J. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. I. LACTATE OXIDATION BY MYCOPLASMA GALLISEPTICUM. J Bacteriol. 1963 Nov;86:893–897. doi: 10.1128/jb.86.5.893-897.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TOURTELLOTTE M. E., JACOBS R. E. Physiological and serologic comparisons of PPLO from various sources. Ann N Y Acad Sci. 1960 Jan 15;79:521–530. doi: 10.1111/j.1749-6632.1960.tb42718.x. [DOI] [PubMed] [Google Scholar]
- WEIBULL C., HAMMARBERG K. Occurrence of catalase in pleuropneumonia-like organisms and bacterial L forms. J Bacteriol. 1962 Sep;84:520–525. doi: 10.1128/jb.84.3.520-525.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOD W. A., SCHWERDT R. F. Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation. J Biol Chem. 1953 Apr;201(2):501–511. [PubMed] [Google Scholar]
