Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1964 Jul;88(1):200–209. doi: 10.1128/jb.88.1.200-209.1964

DEPENDENCY OF TREPONEMA MICRODENTIUM ON OTHER ORAL ORGANISMS FOR ISOBUTYRATE, POLYAMINES, AND A CONTROLLED OXIDATION-REDUCTION POTENTIAL

S S Socransky 1, W J Loesche 1, C Hubersak 1, J B Macdonald 1
PMCID: PMC277277  PMID: 14197888

Abstract

Socransky, S. S. (Forsyth Dental Center, Boston, Mass.), W. J. Loesche, C. Hubersak, and J. B. Macdonald. Dependency of Treponema microdentium on other oral organisms for isobutyrate, polyamines, and a controlled oxidation-reduction potential. J. Bacteriol. 88:200–209. 1964.—Strains of Treponema microdentium can be cultivated on a variety of autoclaved commercially available media in the presence of other oral organisms. Organisms supporting growth in these circumstances include a facultative diphtheroid accompanied by either a strain of Fusobacterium or a motile gram-negative anaerobic rod. Culture filtrates and lysates of these “supporting organisms” failed to substitute for growing organisms. Measurement of the oxidation-reduction potential of the test system demonstrated that the spirochetes grew in a narrow range of Eh (optimum, −190 mv). The supporting organisms could be replaced by their filtrates when the Eh of the medium was poised in this range by a combination of reducing agents. Both filtrates contained a heat-labile factor required by the spirochete, which could be replaced by 5 μg/ml of cocarboxylase. Isobutyric acid, which could be detected in the fusiform filtrate, and putrescine which could be detected in the diphtheroid filtrate, replaced the spirochete's remaining filtrate requirement. Maximal growth occurred when any of the following were incorporated into the medium: 2 μg/ml of sodium isobutyrate; 250 μg/ml of putrescine dihydrochloride; 200 μg/ml of spermidine phosphosphate, or 150 μg/ml of spermine tetrahydrochloride.

Full text

PDF
200

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON M. J., BRYANT M. P., DOETSCH R. N. Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine. J Bacteriol. 1962 Mar;83:523–532. doi: 10.1128/jb.83.3.523-532.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALLISON M. J., BRYANT M. P., DOETSCH R. N. Volatile fatty acid growth factor for cellulolytic cocci of bovine rumen. Science. 1958 Aug 29;128(3322):474–475. doi: 10.1126/science.128.3322.474. [DOI] [PubMed] [Google Scholar]
  3. ALLISON M. J., BRYANT M. P., KATZ I., KEENEY M. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J Bacteriol. 1962 May;83:1084–1093. doi: 10.1128/jb.83.5.1084-1093.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ANDERTON J. I., LOCKE D. J. Extraction of pigment from cooked cured-meat products. Nature. 1955 May 7;175(4462):818–819. doi: 10.1038/175818b0. [DOI] [PubMed] [Google Scholar]
  5. BREMNER J. M., KENTEN R. H. Paper chromatography of amines. Biochem J. 1951 Oct;49(5):651–655. doi: 10.1042/bj0490651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryant M. P., Robinson I. M. Some Nutritional Requirements of the Genus Ruminococcus. Appl Microbiol. 1961 Mar;9(2):91–95. doi: 10.1128/am.9.2.91-95.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAMPP E. G., NEVIN T. A. Substitution of known compounds for ascitic fluid in the cultivation of Borrelia vincentii. J Bacteriol. 1959 Jun;77(6):800–803. doi: 10.1128/jb.77.6.800-803.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HANNON J. P. Tissue energy metabolism in the cold-acclimatized rat. Fed Proc. 1960 Dec;19(Suppl 5):139–144. [PubMed] [Google Scholar]
  9. HARDY P. H., Jr, LEE Y. C., NELL E. E. COLONIAL GROWTH OF ANAEROBIC SPIROCHETES ON SOLID MEDIA. J Bacteriol. 1963 Oct;86:616–626. doi: 10.1128/jb.86.4.616-626.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HERBST E. J., SNELL E. E. Putrescine and related compounds as growth factors for Hemophilus parainfluenzae 7991. J Biol Chem. 1949 Nov;181(1):47–54. [PubMed] [Google Scholar]
  11. LISTGARTEN M. A., LOESCHE W. J., SOCRANSKY S. S. MORPHOLOGY OF TREPONEMA MICRODENTIUM AS REVEALED BY ELECTRON MICROSCOPY OF ULTRATHIN SECTIONS. J Bacteriol. 1963 Apr;85:932–939. doi: 10.1128/jb.85.4.932-939.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MACDONALD J. B., SUTTON R. M., KNOLL M. L. The production of fusospirochetal infections in guinea pigs with recombined pure cultures. J Infect Dis. 1954 Nov-Dec;95(3):275–284. doi: 10.1093/infdis/95.3.275. [DOI] [PubMed] [Google Scholar]
  13. MAGER J. Influence of osmotic pressure on the polyamine requirement of Neisseria perflava and Pasteurella tularensis for growth in defined media. Nature. 1955 Nov 12;176(4489):933–934. doi: 10.1038/176933a0. [DOI] [PubMed] [Google Scholar]
  14. MAGER J. The stabilizing effect of spermine and related polyamines and bacterial protoplasts. Biochim Biophys Acta. 1959 Dec;36:529–531. doi: 10.1016/0006-3002(59)90195-7. [DOI] [PubMed] [Google Scholar]
  15. MARTIN W. H., Jr, PELCZAR M. J., Jr, HANSEN P. A. Putrescine as a growth requirement for Neisseria. Science. 1952 Oct 31;116(3018):483–484. doi: 10.1126/science.116.3018.483. [DOI] [PubMed] [Google Scholar]
  16. NEVIN T. A., HAMPP E. G., DUEY B. V. Interaction between Borrelia vincetii and an oral diphtheroid. J Bacteriol. 1960 Dec;80:783–786. doi: 10.1128/jb.80.6.783-786.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NEVIN T. A., HAMPP E. G. Partially defined medium for the cultivation of Borrelia vincentil. J Bacteriol. 1959 Aug;78:263–266. doi: 10.1128/jb.78.2.263-266.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ROSEBURY T., MACDONALD J. B., ELLISON S. A., ENGEL S. G. Media and methods for separation and cultivation of oral spirochetes. Oral Surg Oral Med Oral Pathol. 1951 Jan;4(1):68–85. doi: 10.1016/0030-4220(51)90525-7. [DOI] [PubMed] [Google Scholar]
  19. ROSENTHAL S. M., TABOR C. W. The pharmacology of spermine and spermidine; distribution and excretion. J Pharmacol Exp Ther. 1956 Feb;116(2):131–138. [PubMed] [Google Scholar]
  20. SOCRANSKY S., MACDONALD J. B., SAWYER S. The cultivation of Treponema microdentium as surface colonies. Arch Oral Biol. 1959 Oct;1:171–172. doi: 10.1016/0003-9969(59)90009-3. [DOI] [PubMed] [Google Scholar]
  21. STEINMAN H. G., OYAMA V. I., SCHULZE H. O. Carbon dioxide, cocarboxylase, citrovorum factor, and coenzyme A as essential growth factors for a saprophytic treponeme (S-69). J Biol Chem. 1954 Nov;211(1):327–335. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES