Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Mar;89(3):640–646. doi: 10.1128/jb.89.3.640-646.1965

Excretion and Degradation of Ribonucleic Acid by Bacillus subtilis

A L Demain 1, R W Burg 1, D Hendlin 1
PMCID: PMC277514  PMID: 14273638

Abstract

Demain, A. L. (Merck & Co., Inc., Rahway, N.J.), R. W. Burg, and D. Hendlin. Excretion and degradation of ribonucleic acid by Bacillus subtilis. J. Bacteriol. 89:640–646. 1965.—Bacillus subtilis MB-1480 was found to produce several 5′-ribonucleotides in the extracellular medium, in addition to the previously found 5′-guanosine monophosphate and guanosine diphosphate. The nucleotides accumulated after excretion of high-molecular-weight ribonucleic acid (RNA) and subsequent extracellular breakdown. Excretion of RNA paralleled growth closely, and was accompanied by deoxyribonucleic acid (DNA) and protein excretion. The process occurred in the absence of visible lysis. Whereas extracellular DNA was stable, the other macromolecules were degraded after excretion. With extracellular DNA as a measure of maximal lysis, it was calculated that the major part of the extracellular RNA must have been excreted by cells which had not undergone lysis.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAMS A., NIELSEN L., THAEMERT J. RAPIDLY SYNTHESIZED RIBONUCLEIC ACID IN MEMBRANE GHOSTS FROM STREPTOCOCCUS FECALIS PROTOPLASTS. Biochim Biophys Acta. 1964 Feb 17;80:325–337. doi: 10.1016/0926-6550(64)90104-5. [DOI] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CAMPBELL J. N., EVANS J. B., PERRY J. J., NIVEN C. F., Jr An extracellular material elaborated by Micrococcus sodonensis. J Bacteriol. 1961 Dec;82:828–837. doi: 10.1128/jb.82.6.828-837.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CATLIN B. W. [Interspecific transformation of Neisseria by culture slime containing deoxyribonucleate]. Science. 1960 Feb 26;131(3400):608–610. doi: 10.1126/science.131.3400.608-a. [DOI] [PubMed] [Google Scholar]
  5. DEMAIN A. L., MILLER I. M., HENDLIN D. PRODUCTION OF EXTRACELLULAR GUANOSINE-5'-MONOPHOSPHATE BY BACILLUS SUBTILIS. J Bacteriol. 1964 Oct;88:991–995. doi: 10.1128/jb.88.4.991-995.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HENDLER R. W., TANI J. ON THE CYTOLOGICAL UNIT FOR PROTEIN SYNTHESIS IN VIVO IN E. COLI. II. STUDIES WITH INTACT CELLS OF TYPE B. Biochim Biophys Acta. 1964 Feb 17;80:294–306. doi: 10.1016/0926-6550(64)90101-x. [DOI] [PubMed] [Google Scholar]
  7. HIGUCHI M., UEMURA T. Release of nucleotides from yeast cells. Nature. 1959 Oct 31;184:1381–1383. doi: 10.1038/1841381a0. [DOI] [PubMed] [Google Scholar]
  8. HILL P. B. Factors involved in protein synthesis in Bacillus megaterium. Can J Biochem Physiol. 1962 Jun;40:709–716. [PubMed] [Google Scholar]
  9. HOFFMANN BERLING H., MAZE R. RELEASE OF MALE-SPECIFIC BACTERIOPHAGES FROM SURVIVING HOST BACTERIA. Virology. 1964 Mar;22:305–313. doi: 10.1016/0042-6822(64)90021-2. [DOI] [PubMed] [Google Scholar]
  10. KUSHNER D. J., POLLOCK M. R. The location of cell-bound penicillinase in Bacillus subtilis. J Gen Microbiol. 1961 Oct;26:255–265. doi: 10.1099/00221287-26-2-255. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. OKAZAKI T., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XV. PURIFICATION AND PROPERTIES OF A POLYMERASE FROM BACILLUS SUBTILIS. J Biol Chem. 1964 Jan;239:259–268. [PubMed] [Google Scholar]
  13. OTTOLENGHI E., HOTCHKISS R. D. Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. J Exp Med. 1962 Oct 1;116:491–519. doi: 10.1084/jem.116.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. POLLOCK M. R. The measurement of the liberation of penicillinase from Bacillus subtilis. J Gen Microbiol. 1961 Oct;26:239–253. doi: 10.1099/00221287-26-2-239. [DOI] [PubMed] [Google Scholar]
  15. POLLOCK M. R. The mechanism of liberation of penicillinase from Bacillus subtilis. J Gen Microbiol. 1961 Oct;26:267–276. doi: 10.1099/00221287-26-2-267. [DOI] [PubMed] [Google Scholar]
  16. SCHINDLER J. RNA-CONTAINING BACTERIOPHAGES. Folia Microbiol (Praha) 1964 Sep;89:312–320. doi: 10.1007/BF02873312. [DOI] [PubMed] [Google Scholar]
  17. TAKAHASHI I., GIBBONS N. E. Effect of salt concentration on the extracellular nucleic acids of Micrococcus halodenitrificans. Can J Microbiol. 1957 Aug;3(5):687–694. doi: 10.1139/m57-076. [DOI] [PubMed] [Google Scholar]
  18. TAKAHASHI I. Genetic transformation of Bacillus subtilis by extracellular DNA. Biochem Biophys Res Commun. 1962 Jun 4;7:467–470. doi: 10.1016/0006-291x(62)90337-6. [DOI] [PubMed] [Google Scholar]
  19. WADE H. E., LOVETT S. Polynucleotide phosphorylase in ribosomes from Escherichia coli. Biochem J. 1961 Nov;81:319–328. doi: 10.1042/bj0810319. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES