Abstract
Ljungdahl, Lars (Western Reserve University, Cleveland, Ohio), and Harland G. Wood. Incorporation of C14 from carbon dioxide into sugar phosphates, carboxylic acids, and amino acids by Clostridium thermoaceticum. J. Bacteriol. 89:1055–1064. 1965.—The mechanism of synthesis of acetate from carbon dioxide by Clostridium thermoaceticum was investigated by incubating cells with glucose or xylose in the presence of C14O2. Sugar phosphates, amino acids, and carboxylic acids were isolated and the specific radioactivities were determined; the distributions of C14 were also determined in some of the compounds. Only fructose-1,6-diphosphate, formate, and lactate had higher specific activities than the acetate. The specific activities and distribution of C14 in the fructose-6-phosphate and ribose-5-phosphate were such that we conclude that the synthesis of acetate does not occur via a pathway involving the sugar phosphates as direct intermediates. Likewise, it is shown that pathways including lactate, aspartate, serine, glycine, malate, and succinate are not of importance in the synthesis of acetate from CO2. The methyl group of free methionine was unlabeled and is not a precursor of the methyl group of acetate.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AUBERT J. P., MILHAUD G., MILLET J. L'assimilation de l'anhydride carbonique par les bactéries chimioautotrophes. Ann Inst Pasteur (Paris) 1957 Apr;92(4):515–524. [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BRICE C., PERLIN A. S. A chemical procedure for determination of the C14-distribution in labelled D-fructose and other ketoses. Can J Biochem Physiol. 1957 Jan;35(1):7–13. [PubMed] [Google Scholar]
- BUSSE M., KINDEL P. K., GIBBS M. The heterolactic fermentation. III. Position of C-14 in the products of fructose dissimilation by Leuconostoc mesenteroides. J Biol Chem. 1961 Nov;236:2850–2853. [PubMed] [Google Scholar]
- Barker H. A., Kamen M. D. Carbon Dioxide Utilization in the Synthesis of Acetic Acid by Clostridium Thermoaceticum. Proc Natl Acad Sci U S A. 1945 Aug;31(8):219–225. doi: 10.1073/pnas.31.8.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker H. A., Kamen M. D., Haas V. Carbon Dioxide Utilization in the Synthesis of Acetic and Butyric Acids by Butyribacterium Rettgeri. Proc Natl Acad Sci U S A. 1945 Nov;31(11):355–360. doi: 10.1073/pnas.31.11.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker H. A. On the Rôle of Carbon Dioxide in the Metabolism of Clostridium Thermoaceticum. Proc Natl Acad Sci U S A. 1944 Apr 15;30(4):88–90. doi: 10.1073/pnas.30.4.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIDSON H. M., FISHMAN W. H. A simplified purification procedure for human prostatic acid phosphatase based oh PH and ammonium sulfate fractionation. J Biol Chem. 1959 Mar;234(3):526–528. [PubMed] [Google Scholar]
- DICKENS F., WILLIAMSON D. H. Formaldehyde as an acceptor aldehyde for transketolase, and the biosynthesis of triose. Nature. 1958 Jun 28;181(4626):1790–1790. doi: 10.1038/1811790a0. [DOI] [PubMed] [Google Scholar]
- Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J., Ritter G. J. A New Type of Glucose Fermentation by Clostridium thermoaceticum. J Bacteriol. 1942 Jun;43(6):701–715. doi: 10.1128/jb.43.6.701-715.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUEST J. R., FRIEDMAN S., WOODS D. D., SMITH E. L. A methyl analogue of cobamide coenzyme in relation to methionine synthesis by bacteria. Nature. 1962 Jul 28;195:340–342. doi: 10.1038/195340a0. [DOI] [PubMed] [Google Scholar]
- LENTZ K., WOOD H. G. Synthesis of acetate from formate and carbon dioxide by Clostridium thermoaceticum. J Biol Chem. 1955 Aug;215(2):645–654. [PubMed] [Google Scholar]
- LJUNGDAHL L. Fermentation of fructose by Leuconostoc mesenteroids. Biochim Biophys Acta. 1962 Nov 19;65:143–145. doi: 10.1016/0006-3002(62)90159-2. [DOI] [PubMed] [Google Scholar]
- LJUNGDAHL L., WOOD H. G., RACKER E., COURI D. Formation of unequally labeled fructose 6-phosphate by an exchange reaction catalyzed by transaldolase. J Biol Chem. 1961 Jun;236:1622–1625. [PubMed] [Google Scholar]
- PHARES E. F. Degradation of labeled propionic and acetic acids. Arch Biochem Biophys. 1951 Sep;33(2):173–178. doi: 10.1016/0003-9861(51)90094-x. [DOI] [PubMed] [Google Scholar]
- PINE L., BARKER H. A. Tracer experiments on the mechanism of acetate formation from carbon dioxide by Butyribacterium rettgeri. J Bacteriol. 1954 Aug;68(2):216–226. doi: 10.1128/jb.68.2.216-226.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POSTON J. M., KURATOMI K., STADTMAN E. R. METHYL-VITAMIN B12 AS A SOURCE OF METHYL GROUPS FOR THE SYNTHESIS OF ACETATE BY CELL-FREE EXTRACTS OF CLOSTRIDIUM THERMOACETICUM. Ann N Y Acad Sci. 1964 Apr 24;112:804–806. doi: 10.1111/j.1749-6632.1964.tb45057.x. [DOI] [PubMed] [Google Scholar]
- Partridge S. M. Filter-paper partition chromatography of sugars: 1. General description and application to the qualitative analysis of sugars in apple juice, egg white and foetal blood of sheep. with a note by R. G. Westall. Biochem J. 1948;42(2):238–250. doi: 10.1042/bj0420238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pirie N. W. The manometric determination of formic acid. Biochem J. 1946;40(1):100–102. doi: 10.1042/bj0400100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RACUSEN D. W., ARONOFF S. Metabolism of soybean leaves. V. The dark reactions following photosynthesis. Arch Biochem Biophys. 1953 Jan;42(1):25–40. doi: 10.1016/0003-9861(53)90234-3. [DOI] [PubMed] [Google Scholar]
- SCHAMBYE P., WOOD H. G., KLEIBER M. Lactose synthesis. I. The distribution of C14 in lactose of milk after intravenous injection of C14 compounds. J Biol Chem. 1957 Jun;226(2):1011–1021. [PubMed] [Google Scholar]
- SCHRAMM M., KLYBAS V., RACKER E. Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J Biol Chem. 1958 Dec;233(6):1283–1288. [PubMed] [Google Scholar]
- SWIM H. E., KRAMPITZ L. O. Acetic acid oxidation by Escherichia coli; evidence for the occurrence of a tricarboxylic acid cycle. J Bacteriol. 1954 Apr;67(4):419–425. doi: 10.1128/jb.67.4.419-425.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TUBOI S., KIKUCHI G. Enzymic cleavage of malate to glyoxylate and acetyl-coenzyme A. Biochim Biophys Acta. 1962 Jul 30;62:188–190. doi: 10.1016/0006-3002(62)90513-9. [DOI] [PubMed] [Google Scholar]
- VOTAW R., WILLIAMSON W. T., KRAMPITZ L. O., WOOD W. A. DIHYDROXYETHYL THIAMINDIPHOSPHATE, AN INTERMEDIATE IN THE PHOSPHOKETOLASE REACTION. Biochem Z. 1963;338:756–762. [PubMed] [Google Scholar]
- WOOD H. G. A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J Biol Chem. 1952 Feb;194(2):905–931. [PubMed] [Google Scholar]
- WOOD H. G. Fermentation of 3, 4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. J Biol Chem. 1952 Dec;199(2):579–583. [PubMed] [Google Scholar]