Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 Apr;89(4):1145–1150. doi: 10.1128/jb.89.4.1145-1150.1965

Glycine Synthesis and Metabolism in Escherichia coli

Lewis I Pizer 1
PMCID: PMC277611  PMID: 14276110

Abstract

Pizer, Lewis I. (University of Pennsylvania, Philadelphia). Glycine synthesis and metabolism in Escherichia coli. J. Bacteriol. 89:1145–1150. 1965.—A correlation was demonstrated between a nutritional requirement that can only be satisfied by glycine and the absence of the enzymatic capacity to interconvert l-serine and glycine. Serine synthesis from 3-phosphoglycerate was observed in the same cell-free extracts which could not convert serine to glycine. The above results show that serine is the precursor of glycine under normal growth conditions. The C-2 of glycine provided “one-carbon” fragments when the C-3 of serine was not available as the source of “one-carbon” fragments. This condition occurred when a mutation produced a loss of serine aldolase activity or when a serine-glycine auxotroph was grown with glycine. Under these growth conditions, 30 to 40% of the “one-carbon” fragments used for cellular synthesis were derived from glycine.

Full text

PDF
1145

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. FELDMAN L. I., GUNSALUS I. C. The occurrence of a wide variety of transaminases in bacteria. J Biol Chem. 1950 Dec;187(2):821–830. [PubMed] [Google Scholar]
  3. KISLIUK R. L., SAKAMI W. A study of the mechanism of serine biosynthesis. J Biol Chem. 1955 May;214(1):47–57. [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. MEINHART J. O., SIMMONDS S. Serine metabolism in a mutant-strain of Escherichia coli strain K-12. J Biol Chem. 1955 Mar;213(1):329–341. [PubMed] [Google Scholar]
  6. NEWMAN E. B., MAGASANIK B. THE RELATION OF SERINE--GLYCINE METABOLISM TO THE FORMATION OF SINGLE-CARBON UNITS. Biochim Biophys Acta. 1963 Nov 15;78:437–448. doi: 10.1016/0006-3002(63)90905-3. [DOI] [PubMed] [Google Scholar]
  7. PIZER L. I., POTOCHNY M. L. NUTRITIONAL AND REGULATORY ASPECTS OF SERINE METABOLISM IN ESCHERICHIA COLI. J Bacteriol. 1964 Sep;88:611–619. doi: 10.1128/jb.88.3.611-619.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. PIZER L. I. THE PATHWAY AND CONTROL OF SERINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Biol Chem. 1963 Dec;238:3934–3944. [PubMed] [Google Scholar]
  9. Roepke R. R., Libby R. L., Small M. H. Mutation or Variation of Escherichia coli with Respect to Growth Requirements. J Bacteriol. 1944 Oct;48(4):401–412. doi: 10.1128/jb.48.4.401-412.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SAGERS R. D., GUNSALUS I. C. Intermediatry metabolism of Diplococcus glycinophilus. I. Glycine cleavage and one-carbon interconversions. J Bacteriol. 1961 Apr;81:541–549. doi: 10.1128/jb.81.4.541-549.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. UMBARGER H. E., UMBARGER M. A., SIU P. M. BIOSYNTHESIS OF SERINE IN ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM. J Bacteriol. 1963 Jun;85:1431–1439. doi: 10.1128/jb.85.6.1431-1439.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES