Abstract
Venema, G. (Hammersmith Hospital, London, England), R. H. Prtichard, and T. Venema-Schröder. Fate of transforming deoxyribonucleic acid in Bacillus subtilis. J. Bacteriol. 89:1250–1255. 1965.—Donor deoxyribonucleic acid (DNA) introduced into competent recipient cells of Bacillus subtilis undergoes a transient loss of its transforming activity shortly after uptake; transforming activity reappears as a function of time of incubation. Soon after introduction of donor DNA into the cells, joint activity of donor and recipient markers is present; this activity also increases as a function of time of incubation. However, donor marker recovery and appearance of recombinant-type activity have different kinetics, suggesting that recovery of activity of donor DNA after the eclipse phase and integration are separate processes, and that recovery precedes integration. The appearance of recombinant-type activity is independent of DNA synthesis. It is suggested that only one strand of the donor DNA is integrated in transformation. It is, therefore, possible that the eclipse is due to a phase in the transformation process during which the donor DNA is single stranded.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EPHRUSSI-TAYLOR H. [The status of the transforming DNA during the 1st phases of bacterial transformation]. C R Seances Soc Biol Fil. 1960;154:1951–1955. [PubMed] [Google Scholar]
- FOX M. S., ALLEN M. K. ON THE MECHANISM OF DEOXYRIBONUCLEATE INTEGRATION IN PNEUMOCOCCAL TRANSFORMATION. Proc Natl Acad Sci U S A. 1964 Aug;52:412–419. doi: 10.1073/pnas.52.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOX M. S., HOTCHKISS R. D. Fate of transforming deoxyribonucleate following fixation by transformable bacteria. Nature. 1960 Sep 17;187:1002–1006. doi: 10.1038/1871002a0. [DOI] [PubMed] [Google Scholar]
- FOX M. S., HOTCHKISS R. D. Fate of transforming deoxyribonucleate following fixation by transformable bacteria. Nature. 1960 Sep 17;187:1002–1006. doi: 10.1038/1871002a0. [DOI] [PubMed] [Google Scholar]
- FOX M. S. The fate of transforming deoxyribonucleate following fixation by transformable bacteria. III. Proc Natl Acad Sci U S A. 1962 Jun 15;48:1043–1048. doi: 10.1073/pnas.48.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUILD W. R. Transformation by denatured deoxyribonucleic acid. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1560–1564. doi: 10.1073/pnas.47.10.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herriott R. M. FORMATION OF HETEROZYGOTES BY ANNEALING A MIXTURE OF TRANSFORMING DNAS. Proc Natl Acad Sci U S A. 1961 Feb;47(2):146–153. doi: 10.1073/pnas.47.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KENT J. L., ROGER M., HOTCHKISS R. D. ON THE ROLE OF INTEGRITY OF DNA PARTICLES IN GENETIC RECOMBINATION DURING PNEUMOCOCCAL TRANSFORMATION. Proc Natl Acad Sci U S A. 1963 Oct;50:717–725. doi: 10.1073/pnas.50.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIRBY K. S. A new method for the isolation of deoxyribonucleic acids; evidence on the nature of bonds between deoxyribonucleic acid and protein. Biochem J. 1957 Jul;66(3):495–504. doi: 10.1042/bj0660495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
- LERMAN L. S., TOLMACH L. J. Genetic transformation. II. The significance of damage to the DNA molecule. Biochim Biophys Acta. 1959 Jun;33(2):371–387. doi: 10.1016/0006-3002(59)90127-1. [DOI] [PubMed] [Google Scholar]
- Marmur J., Lane D. STRAND SEPARATION AND SPECIFIC RECOMBINATION IN DEOXYRIBONUCLEIC ACIDS: BIOLOGICAL STUDIES. Proc Natl Acad Sci U S A. 1960 Apr;46(4):453–461. doi: 10.1073/pnas.46.4.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PENE J. J., ROMIG W. R. ON THE MECHANISM OF GENETIC RECOMBINATION IN TRANSFORMING BACILLUS SUBTILIS. J Mol Biol. 1964 Jul;9:236–245. doi: 10.1016/s0022-2836(64)80103-0. [DOI] [PubMed] [Google Scholar]
- Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VOLL M. J., GOODGAL S. H. Recombination during transformation in Hemophilus influenzae. Proc Natl Acad Sci U S A. 1961 Apr 15;47:505–512. doi: 10.1073/pnas.47.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]