Abstract
Barnhart, Benjamin J. (Johns Hopkins University School of Hygiene and Public Health, Baltimore, Md.). Residual activity of thermally denatured transforming deoxyribonucleic acid from Haemophilus influenzae. J. Bacteriol. 89:1271–1279. 1965.—The level of residual transforming activity of heated deoxyribonucleic acid (DNA) (i.e., 1 to a few per cent of native DNA-transforming activity) was found to be independent of the heating and quenching temperatures and less susceptible than native or renatured DNA to heat inactivation upon prolonged heating above or below the critical melting temperature. Similar dose-response curves were obtained for inactivation by formamide of native and renatured DNA, but the residual-active material was much more resistant. Heating DNA above the Tm in the presence of 1% formaldehyde resulted in a level of residual activity 4 logs lower than that obtained without formaldehyde. Residual-active material was not inactivated by Escherichia coli phosphodiesterase, but it was susceptible to snake venom phosphodiesterase. A new genetic marker was induced in heated-quenched DNA but not in purified residual-active material following nitrous acid treatment. Residual activity was found to be less susceptible to ultraviolet inactivation and to band at a higher density region in CsCl than native DNA. In conclusion, it is suggested that the residual-active material is a structure formed by intrastrand hydrogen bonding of the separated units of heated-quenched DNA. Such a configuration would result in at least a partially double-stranded structure, which is probably the essential characteristic of the residual-active material endowing it with biological activity.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALEXANDER H. E., LEIDY G. Induction of streptomycin resistance in sensitive Hemophilus influenzae by extracts containing desoxyribonucleic acid from resistant Hemophilus influenzae. J Exp Med. 1953 Jan;97(1):17–31. doi: 10.1084/jem.97.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARNHART B. J., HERRIOTT R. M. PENETRATION OF DEOXYRIBONUCLEIC ACID INTO HEMOPHILUS INFLUENZAE. Biochim Biophys Acta. 1963 Sep 17;76:25–39. [PubMed] [Google Scholar]
- Doty P., Marmur J., Eigner J., Schildkraut C. STRAND SEPARATION AND SPECIFIC RECOMBINATION IN DEOXYRIBONUCLEIC ACIDS: PHYSICAL CHEMICAL STUDIES. Proc Natl Acad Sci U S A. 1960 Apr;46(4):461–476. doi: 10.1073/pnas.46.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FIERS W., SINSHEIMER R. L. The structure of the DNA of bacteriophage phi-X174. I. The action of exopolynucleotidases. J Mol Biol. 1962 Oct;5:408–419. doi: 10.1016/s0022-2836(62)80029-1. [DOI] [PubMed] [Google Scholar]
- GINOZA W., ZIMM B. H. Mechanisms of inactivation of deoxyribonucleic acids by heat. Proc Natl Acad Sci U S A. 1961 May 15;47:639–652. doi: 10.1073/pnas.47.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOODGAL S. H., HERRIOTT R. M. Studies on transformations of Hemophilus influenzae. I. Competence. J Gen Physiol. 1961 Jul;44:1201–1227. doi: 10.1085/jgp.44.6.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOODGAL S. H. Studies on transformations of Hemophilus influenzae. IV. Linked and unlinked transformations. J Gen Physiol. 1961 Nov;45:205–228. doi: 10.1085/jgp.45.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUILD W. R., ROBINSON M. Evidence for message reading from a unique strand of pneumococcal DNA. Proc Natl Acad Sci U S A. 1963 Jul;50:106–112. doi: 10.1073/pnas.50.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUILD W. R. Transformation by denatured deoxyribonucleic acid. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1560–1564. doi: 10.1073/pnas.47.10.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARM W., RUPERT C. S. INFECTION OF TRANSFORMABLE CELLS OF HAEMOPHILUS INFLUENZAE BY BACTERIOPHAGE AND BACTERIOPHAGE DNA. Z Vererbungsl. 1963 Dec 30;94:336–348. doi: 10.1007/BF00897593. [DOI] [PubMed] [Google Scholar]
- HERRIOTT R. M. THE MECHANISM OF RENATURATION OF HEMOPHILUS TRANSFORMING DNA. Biochem Z. 1963;338:179–187. [PubMed] [Google Scholar]
- HORN E. E., HERRIOTT R. M. The mutagenic action of nitrous acid on "single-stranded" (denatured) Hemophilus transforming DNA. Proc Natl Acad Sci U S A. 1962 Aug;48:1409–1416. doi: 10.1073/pnas.48.8.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HSU Y. C., HERRIOTT R. M. Studies on transformations of Hemophilus influenzae. III. The genotypes and phenotypic patterns of three streptomycin-resistant mutants. J Gen Physiol. 1961 Nov;45:197–204. doi: 10.1085/jgp.45.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herriott R. M. FORMATION OF HETEROZYGOTES BY ANNEALING A MIXTURE OF TRANSFORMING DNAS. Proc Natl Acad Sci U S A. 1961 Feb;47(2):146–153. doi: 10.1073/pnas.47.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
- LEHMAN I. R., NUSSBAUM A. L. THE DEOXYRIBONUCLEASES OF ESCHERICHIA COLI. V. ON THE SPECIFICITY OF EXONUCLEASE I (PHOSPHODIESTERASE). J Biol Chem. 1964 Aug;239:2628–2636. [PubMed] [Google Scholar]
- LEHMAN I. R. The deoxyribonucleases of Escherichia coli. I. Purification and properties of a phosphodiesterase. J Biol Chem. 1960 May;235:1479–1487. [PubMed] [Google Scholar]
- LERMAN L. S., TOLMACH L. J. Genetic transformation. I. Cellular incorporation of DNA accompanying transformation in Pneumococcus. Biochim Biophys Acta. 1957 Oct;26(1):68–82. doi: 10.1016/0006-3002(57)90055-0. [DOI] [PubMed] [Google Scholar]
- LERMAN L. S., TOLMACH L. J. Genetic transformation. II. The significance of damage to the DNA molecule. Biochim Biophys Acta. 1959 Jun;33(2):371–387. doi: 10.1016/0006-3002(59)90127-1. [DOI] [PubMed] [Google Scholar]
- LUZZATI V., MATHIS A., MASSON F., WITZ J. SUTURE TRANSITIONS OBSERVED IN DNA AND POLY A IN SOLUTION AS A FUNCTION OF TEMPERATURE AND PH. J Mol Biol. 1964 Oct;10:28–41. doi: 10.1016/s0022-2836(64)80025-5. [DOI] [PubMed] [Google Scholar]
- MARMUR J., TS'O P. O. Denaturation of deoxyribonucleic acid by formamide. Biochim Biophys Acta. 1961 Jul 22;51:32–36. doi: 10.1016/0006-3002(61)91013-7. [DOI] [PubMed] [Google Scholar]
- Marmur J., Lane D. STRAND SEPARATION AND SPECIFIC RECOMBINATION IN DEOXYRIBONUCLEIC ACIDS: BIOLOGICAL STUDIES. Proc Natl Acad Sci U S A. 1960 Apr;46(4):453–461. doi: 10.1073/pnas.46.4.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meselson M., Stahl F. W., Vinograd J. EQUILIBRIUM SEDIMENTATION OF MACROMOLECULES IN DENSITY GRADIENTS. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):581–588. doi: 10.1073/pnas.43.7.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAZZELL W. E., KHORANA H. G. Studies on polynucleotides. III. Enzymic degradation; substrate specificity and properties of snake venom phosphodiesterase. J Biol Chem. 1959 Aug;234(8):2105–2113. [PubMed] [Google Scholar]
- ROGER M., HOTCHKISS R. D. Selective heat inactivation of pneumococcal transforming deoxyribonucleate. Proc Natl Acad Sci U S A. 1961 May 15;47:653–669. doi: 10.1073/pnas.47.5.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROWND R., LANYI J., DOTY P. The biological and physical heterogeneity of thermally denatured and renatured deoxyribonucleic acid. Biochim Biophys Acta. 1961 Oct 14;53:225–227. doi: 10.1016/0006-3002(61)90815-0. [DOI] [PubMed] [Google Scholar]
- STOLLAR D., GROSSMAN L. The reaction of formaldehyde with denatured DNA: spectrophotometric, immunologic, and enzymic studies. J Mol Biol. 1962 Jan;4:31–38. doi: 10.1016/s0022-2836(62)80114-4. [DOI] [PubMed] [Google Scholar]
- SZYBALSKI W. Sampling of virus particles and macromolecules sedimented in an equilibrium density gradient. Experientia. 1960 Apr 15;16:164–164. doi: 10.1007/BF02157737. [DOI] [PubMed] [Google Scholar]
- WILLIAMS E. J., SUNG S. C., LASKOWSKI M., Sr Action of venom phosphodiesterase on deoxyribonucleic acid. J Biol Chem. 1961 Apr;236:1130–1134. [PubMed] [Google Scholar]