Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1965 May;89(5):1354–1369. doi: 10.1128/jb.89.5.1354-1369.1965

Phenethyl Alcohol I. Effect on Macromolecular Synthesis of Escherichia coli

Herbert S Rosenkranz 1, Howard S Carr 1, Harry M Rose 1
PMCID: PMC277652  PMID: 14293009

Abstract

Rosenkranz, Herbert S. (Columbia University, New York, N.Y.), Howard S. Carr, and Harry M. Rose. Phenethyl alcohol. I. Effect on macromolecular synthesis of Escherichia coli. J. Bacteriol. 89:1354–1369. 1965.—An investigation of the mode of action of phenethyl alcohol produced the following results. Phenethyl alcohol had no effect on the physicochemical properties of isolated deoxyribonucleic acid (DNA). The DNA isolated from phenethyl alcohol-treated bacteria had physicochemical properties identical with those of DNA isolated from normal cells. The metabolic functions most sensitive to the inhibitory action of phenethyl alcohol appeared to be the process of enzyme induction and, possibly, the synthesis of messenger ribonucleic acid. Phenethyl alcohol did not affect the polyuridylic acid-mediated synthesis of polyphenylalanine in a cell-free amino acid-incorporating system.

Full text

PDF
1354

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARNER H. D., COHEN S. S. The induction of thymine synthesis by T2 infection of a thymine requiring mutant of Escherichia coli. J Bacteriol. 1954 Jul;68(1):80–88. doi: 10.1128/jb.68.1.80-88.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARNER H. D., COHEN S. S. The relation of growth to the lethal damage induced by ultraviolet irradiation in Escherichia coli. J Bacteriol. 1956 Feb;71(2):149–157. doi: 10.1128/jb.71.2.149-157.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BERRAH G., KONETZKA W. A. Selective and reversible inhibition of the synthesis of bacterial deoxyribonucleic acid by phenethyl alcohol. J Bacteriol. 1962 Apr;83:738–744. doi: 10.1128/jb.83.4.738-744.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BOUCK N., ADELBERG E. A. The relationship between DNA synthesis and conjugation in Escherichia coli. Biochem Biophys Res Commun. 1963 Apr 2;11:24–27. doi: 10.1016/0006-291x(63)90021-4. [DOI] [PubMed] [Google Scholar]
  5. BROCK T. D., BROCK M. L. Similarity in mode of action of chloramphenicol and erythromycin. Biochim Biophys Acta. 1959 May;33(1):274–275. doi: 10.1016/0006-3002(59)90535-9. [DOI] [PubMed] [Google Scholar]
  6. BUSSARD A., NAONO S., GROS F., MONOD J. [Effects of an analog of uracil on the properties of an enzymatic protein synthesized in its presence]. C R Hebd Seances Acad Sci. 1960 Jun 13;250:4049–4051. [PubMed] [Google Scholar]
  7. BUTTIN G. M'ECANISMES R'EGULATEURS DANS LA BIOSYNTH'ESE DES ENZYMES DU M'ETABOLISME DU GALACTOSE CHEZ ESCHERICHIA COLI K12. III. L'"EFFET DE D'ER'EPRESSION" PROVOQU'E PAR LE D'EVELOPPEMENT DU PHAGE LAMBDA. J Mol Biol. 1963 Dec;7:610–631. doi: 10.1016/s0022-2836(63)80108-4. [DOI] [PubMed] [Google Scholar]
  8. CHAMPE S. P., BENZER S. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc Natl Acad Sci U S A. 1962 Apr 15;48:532–546. doi: 10.1073/pnas.48.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CHEER S., TCHEN T. T. Effect of mitomycin C on the synthesis of induced bita-galactosidase in E. coli. Biochem Biophys Res Commun. 1962 Oct 17;9:271–274. doi: 10.1016/0006-291x(62)90072-4. [DOI] [PubMed] [Google Scholar]
  10. COHEN S. S., BARNER H. Enzymatic adaptation in a thymine requiring strain of Escherichia coli. J Bacteriol. 1955 Jan;69(1):59–66. doi: 10.1128/jb.69.1.59-66.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. COHEN S. S. Thymine deficiency and the death of bacteria. Tex Rep Biol Med. 1957;15(1):154–160. [PubMed] [Google Scholar]
  12. COOPER S., ZINDER N. D. The growth of an RNA bacteriophage: the role of DNA synthesis. Virology. 1962 Nov;18:405–411. doi: 10.1016/0042-6822(62)90031-4. [DOI] [PubMed] [Google Scholar]
  13. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DEL VALLE M. R., ARONSON A. I. Evidence for the synthesis of stable informational RNA required for bacterial spore formation. Biochem Biophys Res Commun. 1962 Nov 27;9:421–425. doi: 10.1016/0006-291x(62)90027-x. [DOI] [PubMed] [Google Scholar]
  15. DUBIN D. T., DAVIS B. D. The effect of streptomycin on potassium flux in Escherichia coli. Biochim Biophys Acta. 1961 Sep 16;52:400–402. doi: 10.1016/0006-3002(61)90697-7. [DOI] [PubMed] [Google Scholar]
  16. DUBIN D. T., DAVIS B. D. The streptomycin-triggered depoly-merization of ribonucleic acid in Escherichia coli. Biochim Biophys Acta. 1962 May 14;55:793–795. doi: 10.1016/0006-3002(62)90863-6. [DOI] [PubMed] [Google Scholar]
  17. Doty P., Marmur J., Eigner J., Schildkraut C. STRAND SEPARATION AND SPECIFIC RECOMBINATION IN DEOXYRIBONUCLEIC ACIDS: PHYSICAL CHEMICAL STUDIES. Proc Natl Acad Sci U S A. 1960 Apr;46(4):461–476. doi: 10.1073/pnas.46.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ECHOLS H., GAREN A., GAREN S., TORRIANI A. Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol. 1961 Aug;3:425–438. doi: 10.1016/s0022-2836(61)80055-7. [DOI] [PubMed] [Google Scholar]
  19. FOLSOME C. E. Inhibition of recombination and heterozygosis in phenyl ethyl alcohol-treated phage T4-E. coli B complexes. Biochem Biophys Res Commun. 1963 Apr 23;11:97–101. doi: 10.1016/0006-291x(63)90073-1. [DOI] [PubMed] [Google Scholar]
  20. GAREN A., SIDDIQI O. Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1121–1127. doi: 10.1073/pnas.48.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. GEIDUSCHEK E. P. "Reversible" DNA. Proc Natl Acad Sci U S A. 1961 Jul 15;47:950–955. doi: 10.1073/pnas.47.7.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. GREENBERG J., MANDELL J. D., WOODY P. L. Resistance and cross-resistance of Escherichia coli mutants to antitumour agent mitomycin C. J Gen Microbiol. 1961 Nov;26:509–520. doi: 10.1099/00221287-26-3-509. [DOI] [PubMed] [Google Scholar]
  23. GROSSMAN L., LEVINE S. S., ALLISON W. S. The reaction of formaldehyde with nucleotides and T2 bacteriophage DNA. J Mol Biol. 1961 Feb;3:47–60. doi: 10.1016/s0022-2836(61)80007-7. [DOI] [PubMed] [Google Scholar]
  24. HASELKORN R. ACTINOMYCIN D AS A PROBE FOR NUCLEIC ACID SECONDARY STRUCTURE. Science. 1964 Feb 14;143(3607):682–684. doi: 10.1126/science.143.3607.682. [DOI] [PubMed] [Google Scholar]
  25. HILL R. F. Dose-mutation relationships in ultraviolet-induced reversion from auxotrophy in Escherichia coli. J Gen Microbiol. 1963 Feb;30:281–287. doi: 10.1099/00221287-30-2-281. [DOI] [PubMed] [Google Scholar]
  26. IYER V. N., SZYBALSKI W. A MOLECULAR MECHANISM OF MITOMYCIN ACTION: LINKING OF COMPLEMENTARY DNA STRANDS. Proc Natl Acad Sci U S A. 1963 Aug;50:355–362. doi: 10.1073/pnas.50.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. KELNER A. Growth, respiration, and nucleic acid synthesis in ultraviolet-irradiated and in photoreactivated Escherichia coli. J Bacteriol. 1953 Mar;65(3):252–262. doi: 10.1128/jb.65.3.252-262.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LILLEY B. D., BREWER J. H. The selective antibacterial action of phenylethyl alcohol. J Am Pharm Assoc Am Pharm Assoc. 1953 Jan;42(1):6–8. doi: 10.1002/jps.3030420103. [DOI] [PubMed] [Google Scholar]
  29. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  30. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  31. MARMUR J., GROSSMAN L. Ultraviolet light induced linking of deoxyribonucleic acid strands and its reversal by photoreactivating enzyme. Proc Natl Acad Sci U S A. 1961 Jun 15;47:778–787. doi: 10.1073/pnas.47.6.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. MASTERS M., PARDEE A. B. Failure of ultraviolet-irradiated Escherichia coli to produce a cross-reacting protein. Biochim Biophys Acta. 1962 Jan 29;56:609–611. doi: 10.1016/0006-3002(62)90617-0. [DOI] [PubMed] [Google Scholar]
  33. NAKADA D., MAGASANIK B. THE ROLES OF INDUCER AND CATABOLITE REPRESSOR IN THE SYNTHESIS OF BETA-GALACTOSIDASE BY ESCHERICHIA COLI. J Mol Biol. 1964 Jan;8:105–127. doi: 10.1016/s0022-2836(64)80153-4. [DOI] [PubMed] [Google Scholar]
  34. NAKADA D. Thymine starvation and beta-galactosidase synthesis. Biochim Biophys Acta. 1962 Apr 2;55:505–511. doi: 10.1016/0006-3002(62)90983-6. [DOI] [PubMed] [Google Scholar]
  35. NEALE S., TRISTRAM H. An altered alkaline phosphatase formed in the presence of norleucine. Biochem Biophys Res Commun. 1963 May 28;11:346–352. doi: 10.1016/0006-291x(63)90121-9. [DOI] [PubMed] [Google Scholar]
  36. NIRENBERG M. W., MATTHAEI J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588–1602. doi: 10.1073/pnas.47.10.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nonoyama M., Ikeda Y. Inhibition of RNA phage growth by phenetyl alcohol. Biochem Biophys Res Commun. 1964 Feb 18;15(1):87–91. doi: 10.1016/0006-291x(64)90108-1. [DOI] [PubMed] [Google Scholar]
  38. REICH E., SHATKIN A. J., TATUM E. L. Bacteriocidal action of mitomycin C. Biochim Biophys Acta. 1961 Oct 14;53:132–149. doi: 10.1016/0006-3002(61)90800-9. [DOI] [PubMed] [Google Scholar]
  39. RICHMOND M. H. Random replacement of phenylalanine by p-fluorophenylalanine in alkaline phosphatase(s) formed during biosynthesis by E. coli. J Mol Biol. 1963 Apr;6:284–294. doi: 10.1016/s0022-2836(63)80089-3. [DOI] [PubMed] [Google Scholar]
  40. ROIZMAN B. Reversible inhibition of herpes simplex multiplication in HEp-2 cells with phenethyl alcohol. Virology. 1963 Apr;19:580–582. doi: 10.1016/0042-6822(63)90054-0. [DOI] [PubMed] [Google Scholar]
  41. ROSENKRANZ H. S., BENDICH A. J., BEISER S. M. THE PROPERTIES OF THE ALKALINE PHOSPHATASE OF STREPTOMYCIN-DEPENDENT STRAINS OF ESCHERICHIA COLI. Biochim Biophys Acta. 1963 Nov 8;77:436–445. doi: 10.1016/0006-3002(63)90518-3. [DOI] [PubMed] [Google Scholar]
  42. ROSENKRANZ H. S., BENDICH A. J. STUDIES ON THE BACTERIOSTATIC ACTION OF HYDROXYLAMINE. Biochim Biophys Acta. 1964 May 18;87:40–53. doi: 10.1016/0926-6550(64)90045-3. [DOI] [PubMed] [Google Scholar]
  43. ROSENKRANZ H. S. MACROMOLECULAR SYNTHESIS AND THE BACTERICIDAL EFFECT OF STREPTOMYCIN. J Bacteriol. 1964 Mar;87:606–608. doi: 10.1128/jb.87.3.606-608.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  45. SCHILDKRAUT C. L., MARMUR J., DOTY P. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J Mol Biol. 1961 Oct;3:595–617. doi: 10.1016/s0022-2836(61)80024-7. [DOI] [PubMed] [Google Scholar]
  46. SIEKEVITZ P. Uptake of radioactive alanine in vitro into the proteins of rat liver fractions. J Biol Chem. 1952 Apr;195(2):549–565. [PubMed] [Google Scholar]
  47. SLEPECKY R. A. INHIBITION OF SPORULATION AND GERMINATION OF BACILLUS MEGATERIUM BY PHENETHYL ALCOHOL. Biochem Biophys Res Commun. 1963 Aug 14;12:369–373. doi: 10.1016/0006-291x(63)90107-4. [DOI] [PubMed] [Google Scholar]
  48. SZULMAJSTER J., CANFIELD R. E., BLICHARSKA J. [Action of actinomycin D on the sporulation of Bacillus subtilis]. C R Hebd Seances Acad Sci. 1963 Feb 25;256:2057–2060. [PubMed] [Google Scholar]
  49. THOMAS C. A., Jr, BERNS K. I. The utility of formaldehyde in stabilizing polynucleotide chains from bacteriophage DNA. J Mol Biol. 1962 Apr;4:309–312. doi: 10.1016/s0022-2836(62)80008-4. [DOI] [PubMed] [Google Scholar]
  50. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  51. TORRIANI A., ROTHMAN F. Mutants of Escherichia coli constitutive for alkaline phosphatase. J Bacteriol. 1961 May;81:835–836. doi: 10.1128/jb.81.5.835-836.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. WOODY-KARRER P., GREENBERG J. RESISTANCE AND CROSS-RESISTANCE OF ESCHERICHIA COLI S MUTANTS TO THE RADIOMIMETIC AGENT PROFLAVINE. J Bacteriol. 1964 Mar;87:536–542. doi: 10.1128/jb.87.3.536-542.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. ZAMENHOF S., RICH K., DE GIOVANNI R. Studies on thymine-5-bromouracil "exchange" in deoxyribonucleic acids of Escherichia coli. J Biol Chem. 1959 Nov;234:2960–2964. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES