Abstract
Leitzmann, Claus (University of Minnesota, Minneapolis), and Robert W. Bernlohr. Changes in the nucleotide pool of Bacillus licheniformis during sporulation. J. Bacteriol. 89:1506–1510. 1965.—An analysis of the amount of acid-soluble nucleotides in Bacillus licheniformis cells showed a 75% increase during presporulation over that in log-phase cells. Cultures in which presporulation was inhibited by actinomycin D showed a decrease in acid-soluble nucleotides during the same time interval. A separation and quantitative determination of the nucleotides in the pool revealed that the relative proportion of each nucleotide remained fairly constant during presporulation. The detection of an intracellular ribonuclease activity and a decrease of the total nucleic acid concentration in the cells suggest that the increased pool arises from polymer breakdown. The effect of actinomycin D on sporulation was examined on both a quantitative and a temporal basis. The data indicate that messenger ribonucleic acid is essential for the completion of the sporulation process and must be resynthesized constantly.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERNLOHR R. W., NOVELLI G. D. BACITRACIN BIOSYNTHESIS AND SPORE FORMATION: THE PHYSIOLOGICAL ROLE OF AN ANTIBIOTIC. Arch Biochem Biophys. 1963 Oct;103:94–104. doi: 10.1016/0003-9861(63)90014-6. [DOI] [PubMed] [Google Scholar]
- COHN W. E. Some results of the applications of ion-exchange chromatography to nucleic acid chemistry. J Cell Physiol Suppl. 1951 Jul;38(Suppl 1):21–40. doi: 10.1002/jcp.1030380405. [DOI] [PubMed] [Google Scholar]
- COLEMAN G., ELLIOTT W. H. STIMULATION OF EXTRACELLULAR RIBONUCLEASE FORMATION IN B. SUBTILIS BY ACTINOMYCIN D. Nature. 1964 Jun 13;202:1083–1085. doi: 10.1038/2021083a0. [DOI] [PubMed] [Google Scholar]
- DEL VALLE M. R., ARONSON A. I. Evidence for the synthesis of stable informational RNA required for bacterial spore formation. Biochem Biophys Res Commun. 1962 Nov 27;9:421–425. doi: 10.1016/0006-291x(62)90027-x. [DOI] [PubMed] [Google Scholar]
- HASHIMOTO T., BLACK S. H., GERHARDT P. Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol. 1960 Apr;6:203–212. doi: 10.1139/m60-022. [DOI] [PubMed] [Google Scholar]
- HURLBERT R. B., SCHMITZ H., BRUMM A. F., POTTER V. R. Nucleotide metabolism. II. Chromatographic separation of acid-soluble nucleotides. J Biol Chem. 1954 Jul;209(1):23–39. [PubMed] [Google Scholar]
- KIRK J. M. The mode of action of actinomycin D. Biochim Biophys Acta. 1960 Jul 29;42:167–169. doi: 10.1016/0006-3002(60)90769-1. [DOI] [PubMed] [Google Scholar]
- MARMUR J., FALKOW S., MANDEL M. NEW APPROACHES TO BACTERIAL TAXONOMY. Annu Rev Microbiol. 1963;17:329–372. doi: 10.1146/annurev.mi.17.100163.001553. [DOI] [PubMed] [Google Scholar]
- NISHIMURA S., NOMURA M. Ribonuclease of Bacillus subtilis. Biochim Biophys Acta. 1958 Nov;30(2):430–431. doi: 10.1016/0006-3002(58)90073-8. [DOI] [PubMed] [Google Scholar]
- RUSHIZKY G. W., GRECO A. E., HARTLEY R. W., Jr, SOBER H. A. STUDIES ON THE CHARACTERIZATION OF RIBONUCLEASES. J Biol Chem. 1964 Jul;239:2165–2169. [PubMed] [Google Scholar]
- Reich E., Goldberg I. H. Actinomycin and nucleic acid function. Prog Nucleic Acid Res Mol Biol. 1964;3:183–234. doi: 10.1016/s0079-6603(08)60742-4. [DOI] [PubMed] [Google Scholar]
- SMEATON J. R., ELLIOTT W. H., COLEMAN G. AN INHIBITOR IN BACILLUS SUBTILIS OF ITS EXTRACELLULAR RIBONUCLEASE. Biochem Biophys Res Commun. 1965 Jan 4;18:36–42. doi: 10.1016/0006-291x(65)90878-8. [DOI] [PubMed] [Google Scholar]
- STROMINGER J. L. Accumulation of uridine and cytidine nucleotides in Staphylococcus aureus inhibited by gentian violet. J Biol Chem. 1959 Jun;234(6):1520–1524. [PubMed] [Google Scholar]
- SZULMAJSTER J. BIOCHIMIE DE LA SPOROG'EN'ESE CHEZ B. SUBTILIS. Bull Soc Chim Biol (Paris) 1964;46:443–481. [PubMed] [Google Scholar]