Abstract
MacQuillan, Anthony M. (The University of Wisconsin, Madison) and Harlyn O. Halvorson. Physiological changes occuring in yeast undergoing glucose repression. J. Bacteriol. 84:31–36. 1962.—Growth of the hybrid yeast Saccharomyces fragilis × S. dobzhanskii on glucose or lactate resulted in (i) the possible impairment of a permeation system for succinic acid, (ii) the repression of succinic and isocitric dehydrogenases and β-glucosidase, and (iii) the induction of isocitratase. The latter two changes were not observed in S. lactis Y14, in which β-glucosidase synthesis is resistant to glucose repression.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARNETT J. A., KORNBERG H. L. The utilization by yeasts of acids of the tricarboxylic acid cycle. J Gen Microbiol. 1960 Aug;23:65–82. doi: 10.1099/00221287-23-1-65. [DOI] [PubMed] [Google Scholar]
- BARRETT J. T., LARSON A. D., KALLIO R. E. The nature of the adaptive lag of Pseudomonas fluorescens toward citrate. J Bacteriol. 1953 Feb;65(2):187–192. doi: 10.1128/jb.65.2.187-192.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIES A. Some factors affecting lactase formation and activity in Saccharomyces fragilis. J Gen Microbiol. 1956 Apr;14(2):425–439. doi: 10.1099/00221287-14-2-425. [DOI] [PubMed] [Google Scholar]
- DUERKSEN J. D., HALVORSON H. The specificity of induction of beta-glucosidase in Saccharomyces cerevisiae. Biochim Biophys Acta. 1959 Nov;36:47–55. doi: 10.1016/0006-3002(59)90068-x. [DOI] [PubMed] [Google Scholar]
- EATON N. R., KLEIN H. P. The oxidation of glucose and acetate by Saccharomyces cerevisiae. J Bacteriol. 1954 Jul;68(1):110–116. doi: 10.1128/jb.68.1.110-116.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englesberg E. GLUCOSE INHIBITION AND THE DIAUXIE PHENOMENON. Proc Natl Acad Sci U S A. 1959 Oct;45(10):1494–1507. doi: 10.1073/pnas.45.10.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HABOUCHA J., MASSACHELEIN C. A. [Study of a respiratory deficiency in Saccharomyces carlsbergensis]. Biochim Biophys Acta. 1960 Feb 12;38:1–11. doi: 10.1016/0006-3002(60)91191-4. [DOI] [PubMed] [Google Scholar]
- KOGUT M., PODOSKI E. P. Oxidative pathways in a fluorescent Pseudomonas. Biochem J. 1953 Dec;55(5):800–811. doi: 10.1042/bj0550800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KORNBERG H. L., ELSDEN S. R. The metabolism of 2-carbon compounds by microorganisms. Adv Enzymol Relat Subj Biochem. 1961;23:401–470. doi: 10.1002/9780470122686.ch8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MACQUILLAN A. M., HALVORSON H. O. Metabolic control of beta-glucosidase synthesis in yeast. J Bacteriol. 1962 Jul;84:23–30. doi: 10.1128/jb.84.1.23-30.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. J., HALVORSON H. O. The components of maltozymase in yeast, and their behavior during deadaptation. J Bacteriol. 1957 Feb;73(2):186–198. doi: 10.1128/jb.73.2.186-198.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SLATER E. C., BORNER W. D., Jr The effect of fluoride on the succinic oxidase system. Biochem J. 1952 Oct;52(2):185–196. doi: 10.1042/bj0520185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
- WICKERHAM L. J., BURTON K. A. Hybridization studies involving Saccharomyces fragilis and Zygosaccharomyces dobzhanskii. J Bacteriol. 1956 Mar;71(3):296–302. doi: 10.1128/jb.71.3.296-302.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von HOFSTEN Acid phosphatase and the growth of Escherichia coli. Biochim Biophys Acta. 1961 Mar 18;48:171–181. doi: 10.1016/0006-3002(61)90529-7. [DOI] [PubMed] [Google Scholar]
