Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Feb;62(2):385–388. doi: 10.1073/pnas.62.2.385

THE MOLECULAR ORIGIN OF LAMBDA PROPHAGE MRNA*

P D Bear 1,, A Skalka 1
PMCID: PMC277809  PMID: 4894327

Abstract

Lambda-specific RNA extracted from lysogenic bacteria hybridizes specifically with fragments of λ DNA containing 43 per cent GC (guanine plus cytosine). Therefore genes known to function in the prophage state (cI and rex) lie 0.38 ± 0.08 fractional molecular length from the right end of the λ DNA molecule, according to the compositional map of Skalka, Burgi, and Hershey.

Full text

PDF
385

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGI E. Changes in molecular weight of DNA accompanying mutations in phage. Proc Natl Acad Sci U S A. 1963 Feb 15;49:151–155. doi: 10.1073/pnas.49.2.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
  3. Hogness D. S., Doerfler W., Egan J. B., Black L. W. The position and orientation of genes in lambda and lambda dg DNA. Cold Spring Harb Symp Quant Biol. 1966;31:129–138. doi: 10.1101/sqb.1966.031.01.020. [DOI] [PubMed] [Google Scholar]
  4. Howard B. D. Phage lambda mutants deficient in r-II exclusion. Science. 1967 Dec 22;158(3808):1588–1589. doi: 10.1126/science.158.3808.1588. [DOI] [PubMed] [Google Scholar]
  5. Joyner A., Isaacs L. N., Echols H., Sly W. S. DNA replication and messenger RNA production after induction of wild-type lambda bacteriophage and lambda mutants. J Mol Biol. 1966 Aug;19(1):174–186. doi: 10.1016/s0022-2836(66)80059-1. [DOI] [PubMed] [Google Scholar]
  6. KAISER A. D., JACOB F. Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. Virology. 1957 Dec;4(3):509–521. doi: 10.1016/0042-6822(57)90083-1. [DOI] [PubMed] [Google Scholar]
  7. Ravin V. K., Poluchina G. N. Mutants of phage lambda unable to exclude phage T4rII. Virology. 1968 Aug;35(4):616–617. doi: 10.1016/0042-6822(68)90292-4. [DOI] [PubMed] [Google Scholar]
  8. SLY W. S., ECHOLS H., ADLER J. CONTROL OF VIRAL MESSENGER RNA AFTER LAMBDA PHAGE INFECTION AND INDUCTION. Proc Natl Acad Sci U S A. 1965 Feb;53:378–385. doi: 10.1073/pnas.53.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Skalka A., Butler B., Echols H. Genetic control of transcription during development of phage gamma. Proc Natl Acad Sci U S A. 1967 Aug;58(2):576–583. doi: 10.1073/pnas.58.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Skalka A. Regional and temporal control of genetic transcription in phage lambda. Proc Natl Acad Sci U S A. 1966 May;55(5):1190–1195. doi: 10.1073/pnas.55.5.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Taylor K., Hradecna Z., Szybalski W. Asymmetric distribution of the transcribing regions on the complementary strands of coliphage lambda DNA. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1618–1625. doi: 10.1073/pnas.57.6.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zimmerman S. B., Sandeen D. The ribonuclease activity of crystallized pancreatic deoxyribonuclease. Anal Biochem. 1966 Feb;14(2):269–277. doi: 10.1016/0003-2697(66)90137-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES