Abstract
C14-labeled amino acids were incorporated in vivo into LDH-5 of rat tissues. Different amounts of LDH-5 in liver, heart muscle, and skeletal muscle resulted from differences in rates of both intracellular degradation and synthesis. Rate constants for LDH-5 synthesis were 65, 2, and 5 picomoles per day per gram in rat liver, heart muscle, and skeletal muscle, respectively; rate constants for degradation were 0.041, 0.399, and 0.018 reciprocal days, respectively. The corresponding half-lives for LDH-5 in these tissues were 16, 1.6, and 31 days.
Markedly divergent rates of LDH-5 catabolism in various tissues suggest the possibility that one isozyme with a slow rate of destruction may serve to maintain critical enzymatic activity in a tissue where rapid degradation of another isozyme occurs.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSON S. R., FLORINI J. R., VESTLING C. S. RAT LIVER LACTATE DEHYDROGENASE. 3. KINETICS AND SPECIFICITY. J Biol Chem. 1964 Sep;239:2991–2997. [PubMed] [Google Scholar]
- Berlin C. M., Schimke R. T. Influence of turnover rates on the responses of enzymes to cortisone. Mol Pharmacol. 1965 Sep;1(2):149–156. [PubMed] [Google Scholar]
- Boyd J. W. The rates of disappearance of L-lactate dehydrogenase isoenzymes from plasma. Biochim Biophys Acta. 1967 Mar 15;132(2):221–231. doi: 10.1016/0005-2744(67)90141-6. [DOI] [PubMed] [Google Scholar]
- DAWSON D. M., GOODFRIEND T. L., KAPLAN N. O. LACTIC DEHYDROGENASES: FUNCTIONS OF THE TWO TYPES RATES OF SYNTHESIS OF THE TWO MAJOR FORMS CAN BE CORRELATED WITH METABOLIC DIFFERENTIATION. Science. 1964 Feb 28;143(3609):929–933. doi: 10.1126/science.143.3609.929. [DOI] [PubMed] [Google Scholar]
- GOODFRIEND T. L., KAPLAN N. O. EFFECTS OF HORMONE ADMINISTRATION ON LACTIC DEHYDROGENASE. J Biol Chem. 1964 Jan;239:130–135. [PubMed] [Google Scholar]
- Goodfriend T. L., Sokol D. M., Kaplan N. O. Control of synthesis of lactic acid dehydrogenases. J Mol Biol. 1966 Jan;15(1):18–31. doi: 10.1016/s0022-2836(66)80206-1. [DOI] [PubMed] [Google Scholar]
- MAHY B. W., ROWSON K. E. ISOENZYMIC SPECIFICITY OF IMPAIRED CLEARANCE IN MICE INFECTED WITH RILEY VIRUS. Science. 1965 Aug 13;149(3685):756–756. doi: 10.1126/science.149.3685.756. [DOI] [PubMed] [Google Scholar]
- NOTKINS A. L., SCHEELE C. IMPAIRED CLEARANCE OF ENZYMES IN MICE INFECTED WITH THE LACTIC DEHYDROGENASE AGENT. J Natl Cancer Inst. 1964 Oct;33:741–749. [PubMed] [Google Scholar]
- PENN N. W. The requirements for serum albumin metabolism in subcellular fractions of liver and brain. Biochim Biophys Acta. 1960 Jan 1;37:55–63. doi: 10.1016/0006-3002(60)90078-0. [DOI] [PubMed] [Google Scholar]
- PRICE V. E., STERLING W. R., TARANTOLA V. A., HARTLEY R. W., Jr, RECHCIGL M., Jr The kinetics of catalase synthesis and destruction in vivo. J Biol Chem. 1962 Nov;237:3468–3475. [PubMed] [Google Scholar]
- Pesce A., Fondy T. P., Stolzenbach F., Castillo F., Kaplan N. O. The comparative enzymology of lactic dehydrogenases. 3. Properties of the H4 and M4 enzymes from a number of vertebrates. J Biol Chem. 1967 May 10;242(9):2151–2167. [PubMed] [Google Scholar]
- REINER J. M. The study of metabolic turnover rates by means of isotopic tracers. I. Fundamental relations. Arch Biochem Biophys. 1953 Sep;46(1):53–79. doi: 10.1016/0003-9861(53)90170-2. [DOI] [PubMed] [Google Scholar]
- Rechcigl M., Jr, Heston W. E. Genetic regulation of enzyme activity in mammalian system by the alteration of the rates of enzyme degradation. Biochem Biophys Res Commun. 1967 Apr 20;27(2):119–124. doi: 10.1016/s0006-291x(67)80049-4. [DOI] [PubMed] [Google Scholar]
- Rechcigl M., Jr In vivo turnover and its role in the metabolic regulation of enzyme levels. Enzymologia. 1968 Jan 31;34(1):23–39. [PubMed] [Google Scholar]
- SCHIMKE R. T. THE IMPORTANCE OF BOTH SYNTHESIS AND DEGRADATION IN THE CONTROL OF ARGINASE LEVELS IN RAT LIVER. J Biol Chem. 1964 Nov;239:3808–3817. [PubMed] [Google Scholar]
- SEGAL H. L., KIM Y. S. GLUCOCORTICOID STIMULATION OF THE BIOSYNTHESIS OF GLUTAMIC-ALANINE TRANSAMINASE. Proc Natl Acad Sci U S A. 1963 Nov;50:912–918. doi: 10.1073/pnas.50.5.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIMPSON M. V. The release of labeled amino acids from the proteins of rat liver slices. J Biol Chem. 1953 Mar;201(1):143–154. [PubMed] [Google Scholar]
- Schimke R. T. Protein turnover and the regulation of enzyme levels in rat liver. Natl Cancer Inst Monogr. 1967 Nov;27:301–314. [PubMed] [Google Scholar]
- VESELL E. S., BEARN A. G. Variations in the lactic dehydrogenase of vertebrate erythrocytes. J Gen Physiol. 1962 Jan;45:553–565. doi: 10.1085/jgp.45.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vesell E. S., Fritz P. J., White E. L. Effects of buffer,pH, ionic strength and temperatures on lactate dehydrogenase isozymes. Biochim Biophys Acta. 1968 Jun 4;159(2):236–243. doi: 10.1016/0005-2744(68)90072-7. [DOI] [PubMed] [Google Scholar]
- Vesell E. S. Genetic control of isozyme patterns in human tissues. Prog Med Genet. 1965;4:128–175. [PubMed] [Google Scholar]
- Vesell E. S., Yielding K. L. Protection of lactate dehydrogenase isozymes from heat inactivation and enzymatic degradation. Ann N Y Acad Sci. 1968 Jun 14;151(1):678–689. doi: 10.1111/j.1749-6632.1968.tb11928.x. [DOI] [PubMed] [Google Scholar]
- Wacker W. E., Schoenenberger G. A. Peptide inhibitors of lactic dehydrogenase (LDH) I: specific inhibition of LDH-M-4 and LDH-H-4 by inhibitor peptides I and II. Biochem Biophys Res Commun. 1966 Feb 3;22(3):291–296. doi: 10.1016/0006-291x(66)90480-3. [DOI] [PubMed] [Google Scholar]
