Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 Feb;62(2):581–588. doi: 10.1073/pnas.62.2.581

STEREOCHEMICAL ANALYSIS OF THE SPECIFICITY OF PANCREATIC RNASE WITH POLYFORMYCIN AS SUBSTRATE: DIFFERENTIATION OF THE TRANSPHOSPHORYLATION AND HYDROLYSIS REACTIONS*

D C Ward 1,2, W Fuller 1,2,, E Reich 1,2
PMCID: PMC277847  PMID: 5256234

Abstract

A stereochemical analysis of the substrate and inhibitor specificities of bovine pancreatic ribonuclease A is presented. A scheme is proposed in which the binding specificity for this protein-nucleic acid interaction is rationalized in terms of a simple system of H-bonds. The functional groups that govern substrate binding for transphosphorylation and hydrolysis, respectively, are considered and differentiated, and predictions are offered concerning the interaction of presumptive substrates with RNase.

Full text

PDF
581

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DONOHUE J., TRUEBLOOD K. N. Base pairing in DNA. J Mol Biol. 1960 Dec;2:363–371. doi: 10.1016/s0022-2836(60)80047-2. [DOI] [PubMed] [Google Scholar]
  2. Emerson T. R., Swan R. J., Ulbricht T. L. Optical rotatory dispersion of nucleic acid derivatives. 8. The conformation of pyrimidine nucleosides in solution. Biochemistry. 1967 Mar;6(3):843–850. doi: 10.1021/bi00855a026. [DOI] [PubMed] [Google Scholar]
  3. Gassen H. G., Witzel H. Zum Mechanismus der Ribonuclease-Reaktion. 1. Die Aufgabe der Pyrimidinbase bei der Reaktion. Eur J Biochem. 1967 Mar;1(1):36–45. doi: 10.1111/j.1432-1033.1967.tb00041.x. [DOI] [PubMed] [Google Scholar]
  4. HUMMEL J. P., KALNITSKY G. MECHANISMS OF CERTAIN PHOSPHOTRANSFERASE REACTIONS: CORRELATION OF STRUCTURE AND CATALYSIS IN SOME SELECTED ENZYMES. Annu Rev Biochem. 1964;33:15–50. doi: 10.1146/annurev.bi.33.070164.000311. [DOI] [PubMed] [Google Scholar]
  5. HUMMEL J. P., VER PLOEG D. A., NELSON C. A. The interaction between ribonuclease and mononucleotides as measured spectrophotometrically. J Biol Chem. 1961 Dec;236:3168–3172. [PubMed] [Google Scholar]
  6. Haschemeyer A. E., Rich A. Nucleoside conformations: an analysis of steric barriers to rotation about the glycosidic bond. J Mol Biol. 1967 Jul 28;27(2):369–384. doi: 10.1016/0022-2836(67)90026-5. [DOI] [PubMed] [Google Scholar]
  7. LEVIN D. H. The polymerization of 8-azaguanosine 5-diphosphate by polynucleotide phosphorylase. Biochim Biophys Acta. 1962 Jul 9;61:75–81. doi: 10.1016/0926-6550(62)90032-4. [DOI] [PubMed] [Google Scholar]
  8. Massoulié J., Michelson A. M., Pochon F. Polynucleotide analogues. VI. Physical studies on 5-substituted pyrimidine polynucleotides. Biochim Biophys Acta. 1966 Jan 18;114(1):16–26. [PubMed] [Google Scholar]
  9. UKITA T., WAKU K., IRIE M., HOSHINO O. Research on pancreatic ribonuclease. I. The inhibition of cyclic phospho-diesterase activity of bovine pancreatic ribonuclease by several substrate analogues. J Biochem. 1961 Nov;50:405–415. doi: 10.1093/oxfordjournals.jbchem.a127467. [DOI] [PubMed] [Google Scholar]
  10. Ward D. C., Reich E. Conformational properties of polyformycin: a polyribonucleotide with individual residues in the syn conformation. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1494–1501. doi: 10.1073/pnas.61.4.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wyckoff H. W., Hardman K. D., Allewell N. M., Inagami T., Johnson L. N., Richards F. M. The structure of ribonuclease-S at 3.5 A resolution. J Biol Chem. 1967 Sep 10;242(17):3984–3988. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES