Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1962 Oct;84(4):716–723. doi: 10.1128/jb.84.4.716-723.1962

OXIDATIVE METABOLISM IN PEDIOCOCCUS PENTOSACEUS I. ,

Role of Oxygen and Catalase1,2

Walter J Dobrogosz a,3, Robert W Stone a
PMCID: PMC277948  PMID: 14028239

Abstract

Dobrogosz, Walter J. (Pennsylvania State University, University Park) and Robert W. Stone. Oxidative metabolism in Pediococcus pentosaceus. I. Role of oxygen and catalase. J. Bacteriol. 84:716–723. 1962.—Studies were conducted on the physiological behavior of several strains of Pediococcus pentosaceus isolated from alfalfa silages. Although these organisms are regarded as homofermentative lactic acid bacteria which metabolize carbohydrates via the classic reactions of glycolysis, this investigation showed that they were capable of developing other physiologically important reactions related to carbohydrate metabolism. Growth on glycerol, for example, was shown to depend on the development of aerobic reactions, and was directly related to the catalase content of the various strains tested. These organisms were shown to be devoid of a cytochrome system, thus implicating an active flavoprotein system in oxidative reactions. A study of the end products of aerobic glycerol metabolism suggested that glycerol was oxidized to the pyruvate level, with subsequent reactions involving pyruvate leading to the accumulation of lactate, acetate, acetoin, and CO2 in a molar ratio of approximately 1:1:1:3.

Full text

PDF
716

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHRISTENSEN M. D., ALBURY M. N., PEDERSON C. S. Variation in the acetic acid-lactic acid ratio among the lactic acid bacteria. Appl Microbiol. 1958 Sep;6(5):316–318. doi: 10.1128/am.6.5.316-318.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHRISTENSEN M. D., PEDERSON C. S. Factors affecting diacetyl production by lactic acid bacteria. Appl Microbiol. 1958 Sep;6(5):319–322. doi: 10.1128/am.6.5.319-322.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DELWICHE E. A. Catalase of Pedicoccus cerevisiae. J Bacteriol. 1961 Mar;81:416–418. doi: 10.1128/jb.81.3.416-418.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DOLIN M. I., GUNSALUS I. C. Pyruvic acid metabolism. II. An acetoinforming enzyme system in Streptococcus faecalis. J Bacteriol. 1951 Aug;62(2):199–214. doi: 10.1128/jb.62.2.199-214.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eggleton P., Elsden S. R., Gough N. The estimation of creatine and of diacetyl. Biochem J. 1943;37(5):526–529. doi: 10.1042/bj0370526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FELTON E. A., EVANS J. B., NIVEN C. F., Jr Production of catalase by the pediococci. J Bacteriol. 1953 Apr;65(4):481–482. doi: 10.1128/jb.65.4.481-482.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farrell M. A. Studies on the Respiratory Mechanism of the Streptococci. J Bacteriol. 1935 Apr;29(4):411–435. doi: 10.1128/jb.29.4.411-435.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GUNSALUS I. C., HORECKER B. L., WOOD W. A. Pathways of carbohydrate metabolism in microorganisms. Bacteriol Rev. 1955 Jun;19(2):79–128. doi: 10.1128/br.19.2.79-128.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gunsalus I. C., Sherman J. M. The Fermentation of Glycerol by Streptococci. J Bacteriol. 1943 Feb;45(2):155–162. doi: 10.1128/jb.45.2.155-162.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gunsalus I. C., Umbreit W. W. The Oxidation of Glycerol by Streptococcus faecalis. J Bacteriol. 1945 Apr;49(4):347–357. doi: 10.1128/jb.49.4.347-357.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JACOBS N. J., VANDEMARK P. J. Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. J Bacteriol. 1960 Apr;79:532–538. doi: 10.1128/jb.79.4.532-538.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JENSEN E. M., SEELEY H. W. The nutrition and physiology of the genus Pediococcus. J Bacteriol. 1954 Apr;67(4):484–488. doi: 10.1128/jb.67.4.484-488.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LENHOFF H. M., KAPLAN N. O. A cytochrome peroxidase from Pseudomonas fluorescens. J Biol Chem. 1956 Jun;220(2):967–982. [PubMed] [Google Scholar]
  14. Morris D. L. Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science. 1948 Mar 5;107(2775):254–255. doi: 10.1126/science.107.2775.254. [DOI] [PubMed] [Google Scholar]
  15. O'KANE D. J. Influence of the pyruvate oxidation factor on the oxidative metabolism of glucose by Streptococcus faecalis. J Bacteriol. 1950 Oct;60(4):449–458. doi: 10.1128/jb.60.4.449-458.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PEDERSON C. S. The genus Pediococcus. Bacteriol Rev. 1949 Dec;13(4):225–232. doi: 10.1128/br.13.4.225-232.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES