Abstract
Detailed models of solute transport through the stratum corneum (SC) require an interpretation of apparent bulk diffusion coefficients in terms of microscopic transport properties. Modern microscopy techniques provide a tool for evaluating one key property—lipid pathway tortuosity—in more detail than previously possible. Microscopic lipid pathway measurements on alkali expanded human SC stained with the lipid-soluble dyes methylene blue, Nile red, and oil red O are described. Brightfield, differential interference contrast, fluorescence, and laser scanning confocal optics were employed to obtain 2-dimensional (2-D) and 3-dimensional (3-D) images. The 2-D techniques clearly outlined the corneocytes. Confocal microscopy using Nile red yielded a well-delineated 3-D structure of expanded SC. Quantitative assessment of the 2-D images from a small number of expanded SC samples led to an average value of 3.7 for the ratio of the shortest lipid-continuous pathway to the width of the membrane. This was corrected for the effect of alkaline expansion to arrive at an average value of 12.7 for the same ratio prior to swelling.
Key Words: Stratum Corneum, Alkaline Expansion, Microscopy, Lipid Pathlength, Tortuosity
References
- 1.Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51:702–747. doi: 10.1152/physrev.1971.51.4.702. [DOI] [PubMed] [Google Scholar]
- 2.Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: theory and in vitro experimental measurement. Am Inst Chem Eng J. 1975;21:985–996. [Google Scholar]
- 3.Ackermann C, Flynn GL, Smith WM. Ether-water partitioning and permeability through nude mouse skin in vitro. II. Hydrocortisone 21-n-alkyl esters, alkanols and hydrophilic compounds. Int J Pharm. 1987;36:67–71. doi: 10.1016/0378-5173(87)90238-9. [DOI] [Google Scholar]
- 4.Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–669. doi: 10.1023/A:1015810312465. [DOI] [PubMed] [Google Scholar]
- 5.Kasting GB, Smith RL, Anderson BD. Prodrugs for dermal delivery solubility, molecular size, and functional group effects. In: Sloan KB, editor. Prodrugs Topical and Ocular Drug Delivery. New York, NY: Marcel Dekker; 1992. pp. 117–161. [Google Scholar]
- 6.Johnson ME, Blankschtein D, Langer R. Evaluation of solute permeation through the stratum corneum lateral bilayer diffusion as the primary transport mechanism. J Pharm Sci. 1997;86:1162–1172. doi: 10.1021/js960198e. [DOI] [PubMed] [Google Scholar]
- 7.Bodde HE, Brink I, Koerten HK, Haan FHN. Visualization of in vitro percutaneous penetration of mercuric chloride transport through intercellular space versus cellular uptake through desmosomes. J Control Rel. 1991;15:227–236. doi: 10.1016/0168-3659(91)90114-S. [DOI] [Google Scholar]
- 8.Flynn GL. Mechanism of percutaneous absorption from physicochemical evidence. In: Bronaugh RL, Maibach HI, editors. Percutaneous Absorption. New York, NY: Marcel Dekker; 1985. pp. 27–51. [Google Scholar]
- 9.Turner NG, Nonato LB. Visualization of stratum corneum and transdermal permeation pathways. In: Potts RO, Guy RH, editors. Mechanisus of Transdermal Drug Delivery. New York, NY: Marcel Dekker; 1997. pp. 1–40. [Google Scholar]
- 10.Potts RO, Francoeur M. The influence of stratum corneum morphology on water permeability. J Invest Dermatol. 1991;96:495–499. doi: 10.1111/1523-1747.ep12470197. [DOI] [PubMed] [Google Scholar]
- 11.Heisig M, Lieckfeldt R, Wittum G, Mazurkevich G, Lee G. Non steady-state descriptions of drug permeation through stratum corneum. I. The biphasic brick and mortar model. Pharm Res. 1996;13:421–426. doi: 10.1023/A:1016048710880. [DOI] [PubMed] [Google Scholar]
- 12.Charalambopoulou GC, Karamertzanis P, Kikkinides ES, Stubos AK, Kanellopoulos NK, Papaioannou AT. A study on structural and diffusion properties of porcine stratum corneum based on very small angle neutron scattering data. Pharm Res. 2000;17:1085–1091. doi: 10.1023/A:1026453628800. [DOI] [PubMed] [Google Scholar]
- 13.Christophers E, Kligman AM. Visualization of the cell layers of the stratum corneum. J Invest Dermatol. 1964;42:407–409. doi: 10.1038/jid.1964.88. [DOI] [PubMed] [Google Scholar]
- 14.Blair C. Morphology and thickness of the human stratum corneum. Brit J Dermatol. 1968;80:430–436. doi: 10.1111/j.1365-2133.1968.tb11978.x. [DOI] [PubMed] [Google Scholar]
- 15.MacKenzie JC. Ordered structure of the stratum corneum of mammalian skin. Nature. 1969;222:881–882. doi: 10.1038/222881a0. [DOI] [PubMed] [Google Scholar]
- 16.Christophers E. Cellular architecture of the stratum corneum. J Invest Dermatol. 1971;56:165–169. doi: 10.1111/1523-1747.ep12260765. [DOI] [PubMed] [Google Scholar]
- 17.Mershon MM. A physicochemical approach to the characterization of stratum corneum. In: Gould RF, editor. Apphed Chemistry at Protein Interfaces. Washington, D.C.: American Chemical Society; 1975. pp. 74–124. [Google Scholar]
- 18.Menton DN. A ininimum-surface mechanism to account for the organization of cells into columns in the mammalian epidermis. Am J Anat. 1976;145:1–22. doi: 10.1002/aja.1001450102. [DOI] [PubMed] [Google Scholar]
- 19.MacKenzie IC, Zimmerman K, Peterson L. The pattern of cellular organization of human epidermis. J Invest Dermatol. 1981;76:459–461. doi: 10.1111/1523-1747.ep12521107. [DOI] [PubMed] [Google Scholar]
- 20.Ya-Xian Z, Suetake T, Tagami H. Number of cell layers of the stratum corneum in normal skin—relationship to the anatomical location on the body, age, sex and physical parameters. Arch Dermatol Res. 1999;291:555–559. doi: 10.1007/s004030050453. [DOI] [PubMed] [Google Scholar]
- 21.Robbins CR, Fernee KM. Some observations on the swelling of human stratum corneum. J Soc Cosmet Chem. 1983;34:21–34. [Google Scholar]
- 22.Montagna W, Parakkal PF. The Structure and Function of Skin. New York, NY: Academic Press; 1974. [Google Scholar]
- 23.Mershon MM. Barrier surfaces of skin. In: Baier RE, editor. Applied Chemistry at Protein Interfaces. Washington, DC: American Chemical Society; 1975. [Google Scholar]
- 24.Elias PM, Goerke J, Friend DS. Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol. 1977;69:535–546. doi: 10.1111/1523-1747.ep12687968. [DOI] [PubMed] [Google Scholar]
- 25.Sheehan DC, Hrapchak BB. Theory and Practice of Histotechnology. St Louis, MO: CV Mosby; 1980. [Google Scholar]
- 26.Fowler SD, Greenspan P. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J Histochem Cytochem. 1985;33:833–836. doi: 10.1177/33.8.4020099. [DOI] [PubMed] [Google Scholar]
- 27.Paddock SW. An introduction to confocal imaging. In: Paddock SW, editor. Confocal Microscopy Methods and Protocols. Towowa, NJ: Humana Press; 1999. pp. 12–12. [Google Scholar]
- 28.Greenspan P, Fowler SD. Spectrofluorometric studies of the lipid probe, Nile red. J Lipid Res. 1985;26:781–789. [PubMed] [Google Scholar]
- 29.Greenspan P, Mayer EP, Fowler SD. Nile red a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985;100:965–973. doi: 10.1083/jcb.100.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Edmonds J, Johnson EL. Matching, Euler tours and the Chinese postman. Math Programming. 1973;5:88–124. doi: 10.1007/BF01580113. [DOI] [Google Scholar]
- 31.Anderson RL, Cassidy JM, Hansen JR, Yellin W. Hydration of stratum corneum. Biopolymers. 1973;12:2789–2802. doi: 10.1002/bip.1973.360121212. [DOI] [PubMed] [Google Scholar]
- 32.Blank IH, Moloney J, Emslie AG, Simon I, Apt C. The diffusion of water across the stratum corneum as a function of its water content. J Invest Dermatol. 1984;82:183–194. doi: 10.1111/1523-1747.ep12259835. [DOI] [PubMed] [Google Scholar]
- 33.Bouwstra JA, Gooris GS, Spek JA, Bras W. Structural investigations of human stratum corneum by small angle X-ray scattering. J Invest Dermatol. 1991;97:1005–1012. doi: 10.1111/1523-1747.ep12492217. [DOI] [PubMed] [Google Scholar]
