Skip to main content
AAPS PharmSci logoLink to AAPS PharmSci
. 2001 Apr 25;3(2):1–13. doi: 10.1208/ps030210

Comparisons of pKa and log P values of some carboxylic and phosphonic acids: Synthesis and measurement

Robert G Franz 1,
PMCID: PMC2779558  PMID: 11741262

Abstract

The changes in the physiochemical properties accompanying the substitution of a phosphonic acid group for a carboxylic acid group on various heterocyclic platforms was determined. A series of low molecular weight heterocyclic carboxylic and phosphonic acids was prepared, and the acid dissociation content (pKa) and log P values were measured potentiometrically. These values were compared to those of substituted benzene phosphonic acids, carboxylic acids, sulfonamides, and tetrazoles. The carboxylic acids included 3 pyrazoles, an imidazole, a triazole, 2 pyrimidine, and 6 aryl compounds. The phosphonic acids included a triazole, 2 pyrazoles, 4 pyrimidines, a thiophene, and 6 aryl compounds. Most of the compounds synthesized had adequate water solubility, although a simple methyl substituent in 2 series had a great effect, completely changing the properties. Log P values for the synthesized carboxylic and phosphonic acid compounds were below 2, and pK1 values for the heterocyclic phosphonic acids were generally 2 to 3 log units lower than for the heterocyclic carboxylic acids.

Key Words: log P, pKa, Heterocyclic Phosphonic Acids, Heterocyclic Carboxylic Acids

References

  • 1.Zimmenmann D, Janin YL, Brehm L, Bräuner-Osborne H, Ebert B, Johansen TN, et al. 3-Pyrazolone analogues of 3-isoxazol metabotropic exicatory amino acid receptor angonist homo-AMPA: synthesis and pharmacological testing. Eur J Med Chem. 1999;34:967–975. doi: 10.1016/S0223-5234(99)00122-1. [DOI] [PubMed] [Google Scholar]
  • 2.Froesti W, Furet R, Hall RC, Micekl SJ, Strub D, Sprecher G, et al. GABAB antagonists: novel CNS-active compounds. In: Testa B, Kybruz E, Fuhrer W, Giger R, et al., editors. Perspectives in Medicinal Chemistry. New York, NY: VHC; 1993. pp. 259–272. [Google Scholar]
  • 3.Dickneite G, Schwab W, Schorlemmer HU, Gebert U, Sdelacek HH. Effect on the immunostimulator HAB 439 on cell-mediated immunity against intracellular bacteria. Int J Immunopharmacol. 1991;13:541–548. doi: 10.1016/0192-0561(91)90074-H. [DOI] [PubMed] [Google Scholar]
  • 4.Mills SG, Hale JL, MacCoss M, Dorn CP, Finke PE, Budhu RJ, et al. Physical and biological properties of water-soluble prodrugs of morphonine acetal substance P antagonists. 213th American College of Surgeons National Meeting, San Francisco, Ca., April 13–17, 1997.
  • 5.Morain R, Lestage P, Roger A, Bobichon C, Desos P, Cordi A, Lepagnol J 1995, S 17625, a selective and competitive non-NMDA antagonist: cerebral anti-ischemic effects in rodents. Br. J Pharmacol. (Proc. Suppl.) 1995;114:339P.
  • 6.Carini DJ, Duncia JV, Aldrich PE, Chiu AT, Johnson AL, Pierce ME, et al. Nonpeptide angiotensin II receptor antagonists: the discovery of n-(biphenylmethyl) imidazoles as potent, orally active antihypertensives. J Med Chem. 1991;34:2525–2547. doi: 10.1021/jm00112a031. [DOI] [PubMed] [Google Scholar]
  • 7.Naylor EM, Chakravarty PK, Costello CA, Chang RS, Chen T-B, Faust KA, et al. Potent imidazole angiotensin II antagonists: acyl sulfonamides and acyl sulfamides as tetrazole replacements. Biomed Chem Lett. 1994; 69–74
  • 8.Steinberg MI, Palkowitz AD, Thrasher KJ, Reel JK, Zimmerman KM, Whitesitt CA, et al. Chiral recognition of the angiotensin II (AT1) receptor by a highly potent phenoxyproline octanoamide. Biomed Chem Lett. 1994;4:51–56. doi: 10.1016/S0960-894X(01)81121-5. [DOI] [Google Scholar]
  • 9.Finar IL, Lord GH. The formylation of the pyrazole nucleus. J Chem Soc. 1957; 3314–3315.
  • 10.Pederson C. The preparation of some n-methyl-1,2,3-triazoles. Acta Chem Scand. 1959;13:888–892. doi: 10.3891/acta.chem.scand.13-0888. [DOI] [Google Scholar]
  • 11.Huppatz JL. Systemic fungicides: the synthesis of certain pyrazole analogs of carboxin. Aust J Chem. 1983;36:135–147. [Google Scholar]
  • 12.Bajnati A, Hubert-Habart M. [Conversion de l’acetyl-5-uracile en dèrivès pyrazoliques par l’hydrazine et les hydrazines monosubstituèes] [Conversion of 5-acetyluracil into pyrazole derivatives by hydrazine and monosubstituted hydrazines]. Bull Soc Chim Fr. 1988;540–547.
  • 13.Schenone P, Sansebastiano L, Mosti L. Reaction of 2-dimethylaminomethylene-1,3-diones with dinucleophiles. VIII. Synthesis of ethyl and methyl 2,4-disubstituted 5-pyrimidinecarboxylates [1] J Heterocycl Chem. 1990;27:295–305. [Google Scholar]
  • 14.Okada E, Masuda R, Hojo M. Facile synthetic methods for 3- and 5-trifluoromethyl-4-trifluoroacetylpyrazoles and their conversion into pyrazole-4-carboxylic acids. Heterocycles. 1992;34:791–798. [Google Scholar]
  • 15.Anderson DK, Sikorski JA, Reitz DB, Pilla LT. Triazole phosphonates: electrophilic substitution of 1-substituted-1H-1,2,4-triazoles via lithiated triazole intermediates. J Heterocycl Chem. 1986;23:1257–1262. [Google Scholar]
  • 16.Aboujaoude EE, Collignon N, Savignac P. Dialkyl Formyl-1 Methylphosphonates a-Fonctionnels II. Preparation par Voie Themique et Transformation en Heterocycles a-Phosphoniques. Tetrahedron. 1985;41:427–433. doi: 10.1016/S0040-4020(01)96436-1. [DOI] [Google Scholar]
  • 17.Aboujaoude EE, Collignon N, Savignac P. Synthèse D’Hètèrocycles a Phosphoniques. Nouveaux Dèveloppements. Phosphorous Sulfur. 1987;31:231–243. doi: 10.1080/03086648708080642. [DOI] [Google Scholar]
  • 18.Shedlovsky T, Kay RL. The ionization constant of acetic acid in water-methanol mixtures at 25o from conductance measurements. J Phys Chem. 1956;60:151–155. doi: 10.1021/j150536a003. [DOI] [Google Scholar]
  • 19.Shedlovsky T. The behaviour of carboxylic acids in mixed solvents. In: Pesce B, editor. Electrolytes. New York: Pergamon Press; 1962. pp. 146–151. [Google Scholar]
  • 20.Avdeff A, Comer JEA, Thomson SJ. pH-Metric log P. 3. Glass electrode calibration in methanol-water, applied to pKa determination of water-insoluble substances. Anal Chem. 1993;65:42–49. doi: 10.1021/ac00049a010. [DOI] [Google Scholar]
  • 21.Shirley DA, Alley PW. The metalation of 1-methyl, 1-benzyl-and 1-phenylimidazole with n-butyllithium. J Am Chem Soc. 1957;79:4922–4927. doi: 10.1021/ja01575a027. [DOI] [Google Scholar]
  • 22.Hüttel R, Welzel G. Die Halogenierung der 1,2,3-Triazole. Annalen. 1955;593:207–218. [Google Scholar]
  • 23.Sansebastiano L, Mosti L, Menozzi G, Schenone P, Muratore O. Reaction of 2-dimethylaminomethylene-1,3-diones with dinucleophiles. Part XI. Synthesis, antiviral (HSV-1) and antimycotic activities of ethyl or methyl 2,4-disubstituted 5-pyrimidinecarboxylates, 2,4-disubstituted 5-pyrimidinecarboxylic acids and 2,4-disubstituted pyrimidines. Farmaco. 1993;48:335–355. [PubMed] [Google Scholar]

Articles from AAPS PharmSci are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES