Abstract
Eagon, R. G. (University of Georgia, Athens). Pyridine nucleotide-linked reactions of Pseudomonas natriegens. J. Bacteriol. 84:819–821. 1962—The observation that Pseudomonas natriegens utilizes the Embden-Meyerhof pathway and the hexose monophosphate-pentose cycle only very slightly, even though the necessary enzymes are present, was explained by the existence of a sluggish system for the oxidation of reduced triphosphopyridine nucleotide (TPNH). Pyridine nucleotide transhydrogenase could not be detected in cell-free extracts. A very active system for the oxidation of reduced diphosphopyridine nucleotide (DPNH) was observed. Thus, since lactic acid is a major end product of glucose dissimilation and since the lactic dehydrogenase of P. natriegens does not utilize DPNH as cofactor, the Embden-Meyerhof pathway apparently operates aerobically by direct oxidation of DPNH, presumably by coupling with the terminal oxidase system rather than by coupling to synthetic reactions requiring DPNH as cofactor. A TPNH-specific glutathione reductase was detected which was inhibited by adenosine-2′-monophosphate.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- EAGON R. G., WANG C. H. Dissimilation of glucose and gluconic acid by Pseudomonas natriegens. J Bacteriol. 1962 Apr;83:879–886. doi: 10.1128/jb.83.4.879-886.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRAMPTON E. W., WOOD W. A. Carbohydrate oxidation by Pseudomonas fluorescens VI. Conversion of 2-keto-6-phosphogluconate to pyruvate. J Biol Chem. 1961 Oct;236:2571–2577. [PubMed] [Google Scholar]
- KAPLAN N. O., COLOWICK S. P., NEUFELD E. F., CIOTTI M. M. Pyridine nucleotide transhydrogenase. IV. Effect of adenylic acid a on the bacterial transhydrogenases. J Biol Chem. 1953 Nov;205(1):17–29. [PubMed] [Google Scholar]
- PAYNE W. J., EAGON R. G., WILLIAMS A. K. Some observations on the physiology of Pseudomonas natriegens nov. spec. Antonie Van Leeuwenhoek. 1961;27:121–128. doi: 10.1007/BF02538432. [DOI] [PubMed] [Google Scholar]
- STERN I. J., WANG C. H., GILMOUR C. M. Comparative catabolism of carbohydrates in Pseudomonas species. J Bacteriol. 1960 Apr;79:601–611. doi: 10.1128/jb.79.4.601-611.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
