Abstract
Rogers, Dexter (Utah State University, Logan) and Shon-hua Yu. Substrate specificity of a glucose permease of Escherichia coli. J. Bacteriol. 84:877–881. 1962.—A study was made of d-galactose uptake by galactose-negative Escherichia coli strain A (Weigle). Uptake probably occurred through a glucose-permease system, because d-glucose and a variety of nonmetabolizable glucose derivatives inhibited the accumulation of galactose and were themselves accumulated. d-Fructose did not inhibit galactose uptake. 6-Deoxy-d-galactose (d-fucose) was taken up by a different permease system. The glucose permease apparently favored pyranoses, and it required the 6-hydroxyl group of the substrate to a greater extent than any of the other hydroxyl groups. Although much of the absorbed glucose-permease substrate was recovered in the free form, a significant amount was recovered as the 6-phosphate ester. Depending on the conditions employed to study uptake, the 6-phosphate ester could amount to as much as 60% of the absorbed galactose.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BUTTIN G., COHEN G. N., MONOD J., RICKENBERG H. V. La galactoside-perméase d'Escherichia coli. Ann Inst Pasteur (Paris) 1956 Dec;91(6):829–857. [PubMed] [Google Scholar]
- COHEN G. N., MONOD J. Bacterial permeases. Bacteriol Rev. 1957 Sep;21(3):169–194. doi: 10.1128/br.21.3.169-194.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRANE R. K. Intestinal absorption of sugars. Physiol Rev. 1960 Oct;40:789–825. doi: 10.1152/physrev.1960.40.4.789. [DOI] [PubMed] [Google Scholar]
- HORECKER B. L., THOMAS J., MONOD J. Galactose transport in Escherichia coli. I. General properties as studied in a galactokinaseless mutant. J Biol Chem. 1960 Jun;235:1580–1585. [PubMed] [Google Scholar]
- LEFEVRE P. G., MARSHALL J. K. Conformational specificity in a biological sugar transport system. Am J Physiol. 1958 Aug;194(2):333–337. doi: 10.1152/ajplegacy.1958.194.2.333. [DOI] [PubMed] [Google Scholar]
- MAGER J. Spermine as a protective agent against osmotic lysis. Nature. 1959 Jun 27;183:1827–1828. doi: 10.1038/1831827a0. [DOI] [PubMed] [Google Scholar]
- MATELES R. I. Ferricyanide reduction method for reducing sugars. Nature. 1960 Jul 16;187:241–242. doi: 10.1038/187241a0. [DOI] [PubMed] [Google Scholar]
- Morris D. L. Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science. 1948 Mar 5;107(2775):254–255. doi: 10.1126/science.107.2775.254. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B. An inducible mechanism for accumulation of melibiose in Escherichia coli. J Bacteriol. 1957 Mar;73(3):376–385. doi: 10.1128/jb.73.3.376-385.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROGERS D., REITHEL F. J. Acid phosphatases of Escherichia coli. Arch Biochem Biophys. 1960 Jul;89:97–104. doi: 10.1016/0003-9861(60)90018-7. [DOI] [PubMed] [Google Scholar]
- ROTMAN B. Separate permeases for the accumulation of methyl-beta-D-galactoside and methyl-beta-D-thiogalactoside in Escherichia coli. Biochim Biophys Acta. 1959 Apr;32:599–601. doi: 10.1016/0006-3002(59)90659-6. [DOI] [PubMed] [Google Scholar]