Abstract
Claridge, C. A. (Merck Sharp & Dohme Research Laboratories, Rahway, N.J.) and David Hendlin. Oxidation of glycerol by Streptococcus faecalis. J. Bacteriol. 84:1181–1186. 1962.—The nature of the factors in yeast autolysate essential for the oxidation of glycerol by Streptococcus faecalis F24 was examined. Two factors appear to be involved in the oxidation of glycerol. One factor was shown to be an inducer of the enzyme system required for glycerol oxidation; the other was shown to be α-lipoic acid. Minute quantities of glucose will “spark” growth of S. faecalis in a medium containing glycerol and acetate as carbon sources, probably by supplying sufficient energy for induction of the glycerol-oxidation system.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- GUNSALUS I. C., DOLIN M. I., STRUGLIA L. Pyruvic acid metabolism. III. A manometric assay for pyruvate oxidation factor. J Biol Chem. 1952 Feb;194(2):849–857. [PubMed] [Google Scholar]
- Gunsalus I. C., Sherman J. M. The Fermentation of Glycerol by Streptococci. J Bacteriol. 1943 Feb;45(2):155–162. doi: 10.1128/jb.45.2.155-162.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunsalus I. C., Umbreit W. W. The Oxidation of Glycerol by Streptococcus faecalis. J Bacteriol. 1945 Apr;49(4):347–357. doi: 10.1128/jb.49.4.347-357.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunsalus I. C., Wood A. J. The Dehydrogenation of Alcohols by Streptococci of Group B. J Bacteriol. 1942 Nov;44(5):523–528. doi: 10.1128/jb.44.5.523-528.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAHN F. E., WISSEMAN C. L., Jr Inhibition of adaptive enzyme formation by antimicrobial agents. Proc Soc Exp Biol Med. 1951 Mar;76(3):533–535. doi: 10.3181/00379727-76-18546. [DOI] [PubMed] [Google Scholar]
- KOPPEL J. L., PORTER C. J., CROCKER B. F. The mechanism of the synthesis of enzymes. I. Development of a system suitable for studying this phenomenon. J Gen Physiol. 1953 May;36(5):703–722. doi: 10.1085/jgp.36.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAO M. R. R., STOKES J. L. Utilization of ethanol by acetic acid bacteria. J Bacteriol. 1953 Dec;66(6):634–638. doi: 10.1128/jb.66.6.634-638.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REED L. J., DeBUSK B. G., JOHNSTON P. M., GETZENDANER M. E. Acetate-replacing factors for lactic acid bacteria. I. Nature, extraction, and distribution. J Biol Chem. 1951 Oct;192(2):851–858. [PubMed] [Google Scholar]
- WISSEMAN C. L., Jr, SMADEL J. E., HAHN F. E., HOPPS H. E. Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J Bacteriol. 1954 Jun;67(6):662–673. doi: 10.1128/jb.67.6.662-673.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- vanDEMARK P. J. The vitamin requirements for glycerol oxidation by Streptococcus faecalis. J Bacteriol. 1950 Apr;59(4):533–539. doi: 10.1128/jb.59.4.533-539.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]