Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Feb;85(2):339–344. doi: 10.1128/jb.85.2.339-344.1963

EFFECT OF METHIONINE, NORLEUCINE, AND LYSINE DERIVATIVES ON CEPHALOSPORIN C FORMATION IN CHEMICALLY DEFINED MEDIA

A L Demain 1, Joanne F Newkirk 1, D Hendlin 1
PMCID: PMC278138  PMID: 14026849

Abstract

Demain, A. L. (Merck Sharp & Dohme Research Laboratories, Rahway, N.J.), Joanne F. Newkirk, and D. Hendlin. Effect of methionine, norleucine, and lysine derivatives on cephalosporin C formation in chemically defined media. J. Bacteriol. 85: 339–344. 1963.—Chemically defined media were developed for production of cephalosporin C by Cephalosporium sp. In such media, the requirement for methionine can be satisfied by norleucine. Further stimulation of antibiotic production was obtained with the lysine derivatives ε-N-acetyl-l-lysine and ε-aminocaproic acid but not with lysine itself. Also inactive were α-aminoadipic and ketoadipic acids. Other lysine derivatives were found to inhibit cephalosporin C production at 0.01 m. The final medium supported the production of approximately 0.5 g of cephalosporin C per liter of medium.

Full text

PDF
339

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAHAM E. P., NEWTON G. G. New penicillins, cephalosporin C, and penicillinase. Endeavour. 1961 Apr;20:92–100. [PubMed] [Google Scholar]
  2. BHUYAN B. K., JOHNSON M. J. Chemically defined media for synnematin production. J Bacteriol. 1958 Oct;76(4):376–384. doi: 10.1128/jb.76.4.376-384.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEMAIN A. L., NEWKIRK J. F. Biosynthesis of cephalosporin C. Appl Microbiol. 1962 Jul;10:321–325. doi: 10.1128/am.10.4.321-325.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KAVANAGH F., TUNIN D., WILD G. D-methionine and the biosynthesis of cephalosporin N. Arch Biochem Biophys. 1958 Oct;77(2):268–274. doi: 10.1016/0003-9861(58)90075-4. [DOI] [PubMed] [Google Scholar]
  5. MEISTER A. Enzymatic transamination reactions involving arginine and ornithine. J Biol Chem. 1954 Feb;206(2):587–596. [PubMed] [Google Scholar]
  6. NARA T., JOHNSON M. J. Production, purification, and characterization of synnematin. J Bacteriol. 1959 Feb;77(2):217–226. doi: 10.1128/jb.77.2.217-226.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Neuberger A., Sanger F. The metabolism of lysine. Biochem J. 1944;38(1):119–125. doi: 10.1042/bj0380119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. PAGE E., GINGRAS R., GAUDRY R. L'action anémiante de deux antagonistes de la lysine; l'hexahomosérine et l'acide alpha-aminoadipique. Can J Res. 1949 Dec;27(6 SECT):364–373. [PubMed] [Google Scholar]
  9. ROWBURY R. J., WOODS D. D. Further studies on the repression of methionine synthesis in Escherichia coli. J Gen Microbiol. 1961 Jan;24:129–144. doi: 10.1099/00221287-24-1-129. [DOI] [PubMed] [Google Scholar]
  10. SCHAIBERGER G. E., FERRARI A. Automatic enzymatic analysis for L-lysine via decarboxylation. Ann N Y Acad Sci. 1960 Jul 22;87:890–893. doi: 10.1111/j.1749-6632.1960.tb23247.x. [DOI] [PubMed] [Google Scholar]
  11. WALKER J. B. Canavanine and homoarginine as antimetabolites of arginine and lysine in yeast and algae. J Biol Chem. 1955 Jan;212(1):207–215. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES