Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Feb;85(2):461–467. doi: 10.1128/jb.85.2.461-467.1963

INTERSPECIFIC TRANSFORMATION IN BACILLUS1

Julius Marmur a, Edna Seaman a, James Levine a,2
PMCID: PMC278154  PMID: 16561996

Abstract

Marmur, J. (Brandeis University, Waltham, Mass.), E. Seaman, and J. Levine. Interspecific transformation in Bacillus. J. Bacteriol. 85:461–467. 1963.—Deoxyribonucleic acids (DNA) from various species of the taxonomic group Bacillaceae were examined for base composition, ability to carry out interspecific transformation, and formation of molecular hybrids in vitro. The minimal requirement for genetic compatibility among different species and for DNA interaction (both reflecting base sequence homologies) is the similarity of the guanine plus cytosine contents of the DNA. The close correlation between the ability of DNA to be competent in interspecific transformation and to form hybrid molecules on denaturation and annealing provided a rational approach to the study of genetic relationship among organisms for which no genetic exchange has yet been demonstrated. Any or all of the criteria (base composition of DNA, transformation, molecular hybrid formation) can be used as tools in the taxonomic assessment of closely related microorganisms.

Full text

PDF
461

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARBU E., LEE K. Y., WAHL R. Contenu en bases puriques et pyrimidiques des acides désoxyribonucléiques des bactéries. Ann Inst Pasteur (Paris) 1956 Aug;91(2):212–224. [PubMed] [Google Scholar]
  2. BRACCO R. M., KRAUSS M. R., ROE A. S., MACLEOD C. M. Transformation reactions between Pneumococcus and three strains of Streptococci. J Exp Med. 1957 Aug 1;106(2):247–259. doi: 10.1084/jem.106.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baron L. S., Carey W. F., Spilman W. M. GENETIC RECOMBINATION BETWEEN ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM. Proc Natl Acad Sci U S A. 1959 Jul;45(7):976–984. doi: 10.1073/pnas.45.7.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CATLIN B. W., CUNNINGHAM L. S. Transforming activities and base contents of deoxyribonucleate preparations from various Neisseriae. J Gen Microbiol. 1961 Oct;26:303–312. doi: 10.1099/00221287-26-2-303. [DOI] [PubMed] [Google Scholar]
  5. CATLIN B. W. [Interspecific transformation of Neisseria by culture slime containing deoxyribonucleate]. Science. 1960 Feb 26;131(3400):608–610. doi: 10.1126/science.131.3400.608-a. [DOI] [PubMed] [Google Scholar]
  6. FALKOW S., MARMUR J., CAREY W. F., SPILMAN W. M., BARON L. S. Episomic transfer between Salmonella typhosa and Serratia marcescens. Genetics. 1961 Jul;46:703–706. doi: 10.1093/genetics/46.7.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LANNI F. Genetic significance of microbial DNA composition. Perspect Biol Med. 1960;3:418–432. doi: 10.1353/pbm.1960.0043. [DOI] [PubMed] [Google Scholar]
  8. LEIDY G., HAHN E., ALEXANDER H. E. Interspecific transformation in Hemophilus: a possible index of relationship between H. influenzae and H. aegyptius. Proc Soc Exp Biol Med. 1959 Oct;102:86–88. doi: 10.3181/00379727-102-25151. [DOI] [PubMed] [Google Scholar]
  9. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  10. LERMAN L. S., TOLMACH L. J. Genetic transformation. I. Cellular incorporation of DNA accompanying transformation in Pneumococcus. Biochim Biophys Acta. 1957 Oct;26(1):68–82. doi: 10.1016/0006-3002(57)90055-0. [DOI] [PubMed] [Google Scholar]
  11. LURIA S. E., ADAMS J. N., TING R. C. Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology. 1960 Nov;12:348–390. doi: 10.1016/0042-6822(60)90161-6. [DOI] [PubMed] [Google Scholar]
  12. LURIA S. E., BURROUS J. W. Hybridization between Escherichia coli and Shigella. J Bacteriol. 1957 Oct;74(4):461–476. doi: 10.1128/jb.74.4.461-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  14. MARMUR J., DOTY P. Heterogeneity in deoxyribonucleic acids. I. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature. 1959 May 23;183(4673):1427–1429. doi: 10.1038/1831427a0. [DOI] [PubMed] [Google Scholar]
  15. MARMUR J., ROWND R., FALKOW S., BARON L. S., SCHILDKRAUT C., DOTY P. The nature of intergeneric episomal infection. Proc Natl Acad Sci U S A. 1961 Jul 15;47:972–979. doi: 10.1073/pnas.47.7.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MIYAKE T., DEMEREC M. Salmonella Escherichia hybrids. Nature. 1959 Jun 6;183(4675):1586–1586. doi: 10.1038/1831586a0. [DOI] [PubMed] [Google Scholar]
  17. Meselson M., Stahl F. W., Vinograd J. EQUILIBRIUM SEDIMENTATION OF MACROMOLECULES IN DENSITY GRADIENTS. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):581–588. doi: 10.1073/pnas.43.7.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SCHAEFFER P. Interspecific reactions in bacterial transformation. Symp Soc Exp Biol. 1958;12:60–74. [PubMed] [Google Scholar]
  19. SCHAEFFER P. La notion d'espèce après les recherches récentes de génétique bactérienne. Ann Inst Pasteur (Paris) 1958 Feb;94(2):167–178. [PubMed] [Google Scholar]
  20. SCHILDKRAUT C. L., MARMUR J., DOTY P. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J Mol Biol. 1961 Oct;3:595–617. doi: 10.1016/s0022-2836(61)80024-7. [DOI] [PubMed] [Google Scholar]
  21. SPIZIZEN J. Genetic activity of deoxyribonucleic acid in the reconstitution of biosynthetic pathways. Fed Proc. 1959 Dec;18:957–965. [PubMed] [Google Scholar]
  22. ZINDER N. D. Hybrids of Escherichia and Salmonella. Science. 1960 Mar 18;131(3403):813–815. doi: 10.1126/science.131.3403.813. [DOI] [PubMed] [Google Scholar]
  23. ZINDER N. D. Sexuality and mating in salmonella. Science. 1960 Mar 25;131(3404):924–926. doi: 10.1126/science.131.3404.924. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES