Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Mar;85(3):666–670. doi: 10.1128/jb.85.3.666-670.1963

SHORT-TERM N215-INCORPORATION BY AZOTOBACTER1

W A Bulen a, J R LeComte a, H E Bales a
PMCID: PMC278199  PMID: 14042947

Abstract

Bulen, W. A. (Charles F. Kettering Research Laboratory, Yellow Springs, Ohio), J. R. LeComte, and H. E. Bales. Short-term N215-incorporation by Azotobacter. J. Bacteriol. 85:666–670. 1963.—Short-term N215-incorporation measurements were used to determine which of the growth requirements were necessary for nitrogen fixation by Azotobacter agilis (A. vinelandii). Normal cells required neither added iron nor molybdenum, but a marked stimulation by Na+ and a minor stimulation by Mg2+ were observed. The Na+ stimulation was not accompanied by an increase in O2 uptake. A lag period preceded the response of molybdenum-deficient cells to added Mo. In systems employing 10 and 20% O2 with 10% N215 in the gas phase, O2 appeared to be both required and inhibitory. These observations may be helpful in attempts to fractionate cell-free nitrogen-fixing systems from this aerobe.

Full text

PDF
666

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BULEN W. A., KEELER R. F., VARNER J. E. Distribution of molybdenum99 in cell-free preparations of Azotobacter vinelandii. J Bacteriol. 1956 Sep;72(3):394–396. doi: 10.1128/jb.72.3.394-396.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bulen W. A. EFFECT OF TUNGSTATE ON THE UPTAKE AND FUNCTION OF MOLYBDATE IN AZOTOBACTER AGILIS. J Bacteriol. 1961 Jul;82(1):130–134. doi: 10.1128/jb.82.1.130-134.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burk D., Lineweaver H. THE INFLUENCE OF FIXED NITROGEN ON AZOTOBACTER. J Bacteriol. 1930 Jun;19(6):389–414. doi: 10.1128/jb.19.6.389-414.1930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DILWORTH M. J. Oxygen inhibition in Azotobacter vinelandii pyruvate oxidation. Biochim Biophys Acta. 1962 Jan 1;56:127–138. doi: 10.1016/0006-3002(62)90533-4. [DOI] [PubMed] [Google Scholar]
  5. ESPOSITO R. G., WILSON P. W. Trace metal requirements of Azotobacter. Proc Soc Exp Biol Med. 1956 Dec;93(3):564–567. doi: 10.3181/00379727-93-22820. [DOI] [PubMed] [Google Scholar]
  6. KEELER R. F., CARR L. B., VARNER J. E. Intracellular localization of iron, calcium, molybdenum and tungsten in Azotobacter vinelandii. Exp Cell Res. 1958 Aug;15(1):80–84. doi: 10.1016/0014-4827(58)90063-6. [DOI] [PubMed] [Google Scholar]
  7. MAGEE W. E., BURRIS R. H. Oxidative activity and nitrogen fixation in cell-free preparations from Azotobacter vinelandii. J Bacteriol. 1956 Jun;71(6):635–643. doi: 10.1128/jb.71.6.635-643.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. NICHOLAS D. J., FISHER D. J. Nitrogen fixation in extracts of Azotobacter vinelandii. Nature. 1960 May 28;186:735–736. doi: 10.1038/186735a0. [DOI] [PubMed] [Google Scholar]
  9. NICHOLAS D. J., SILVESTER D. J., FOWLER J. F. Use of radioactive nitrogen in studying nitrogen fixation in bacterial cells and their extracts. Nature. 1961 Feb 25;189:634–636. doi: 10.1038/189634a0. [DOI] [PubMed] [Google Scholar]
  10. PARKER C. A., SCUTT P. B. Competitive inhibition of nitrogen fixation by oxygen. Biochim Biophys Acta. 1958 Sep;29(3):662–662. doi: 10.1016/0006-3002(58)90037-4. [DOI] [PubMed] [Google Scholar]
  11. PARKER C. A., SCUTT P. B. The effect of oxygen on nitrogen fixation by Azotobacter. Biochim Biophys Acta. 1960 Feb 26;38:230–238. doi: 10.1016/0006-3002(60)91236-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES