Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Jul;86(1):118–124. doi: 10.1128/jb.86.1.118-124.1963

THYMIDINE DIPHOSPHATE-l-RHAMNOSE METABOLISM IN SMOOTH AND ROUGH STRAINS OF ESCHERICHIA COLI AND SALMONELLA WESLACO

Tuneko Okazaki a,1, Jack L Strominger a, Reiji Okazaki a,1
PMCID: PMC278383  PMID: 14051803

Abstract

Okazaki, Tuneko (Washington University School of Medicine, St. Louis, Mo.), Jack L. Stominger, and Reiji Okazaki. Thymidine diphosphate-l-rhamnose metabolism in smooth and rough strains of Escherichia coli and Salmonella weslaco. J. Bacteriol. 86:118–124. 1963.—Logarithmic-phase cells of Escherichia coli O18, which have rhamnose in their lipopolysaccharide, contained only traces of thymidine diphosphate (TDP)-l-rhamnose. Extracts of this organism, however, catalyzed the synthesis of TDP-l-rhamnose from TDP-d-glucose. On the other hand, cells of E. coli R44, a rough variant of this strain which contains no rhamnose in its lipopolysaccharide, contained a large amount of TDP-l-rhamnose. Like the smooth form, this organism was able to synthesize TDP-l-rhamnose. The rough variant is apparently a mutant blocked in some manner in utilization of TDP-l-rhamnose for lipopolysaccharide synthesis. Similar studies of smooth (rhamnose-containing) and rough (rhamnose-lacking) forms of Salmonella weslaco showed that both organisms can synthesize TDP-l-rhamnose from TDP-d-glucose. In contrast to the smooth and rough forms of E. coli O18, only traces of TDP-l-rhamnose were detected in extracts of both forms. A second thymidine diphosphosugar compound isolated from E. coli R44 is similar or identical to TDP-X, previously isolated from E. coli Y-10.

Full text

PDF
118

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DISCHE Z., SHETTLES L. B. A new spectrophotometric test for the detection of methylpentose. J Biol Chem. 1951 Oct;192(2):579–582. [PubMed] [Google Scholar]
  2. GLASER L., KORNFELD S. The enzymatic synthesis of thymidine-linked sugars. II. Thymidine diphosphate L-rhamnose. J Biol Chem. 1961 Jun;236:1795–1799. [PubMed] [Google Scholar]
  3. HEATH E. C., ELBEIN A. D. The enzymatic synthesis of guanosine diphosphate colitose by a mutant strain of Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1209–1216. doi: 10.1073/pnas.48.7.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HURLBERT R. B., SCHMITZ H., BRUMM A. F., POTTER V. R. Nucleotide metabolism. II. Chromatographic separation of acid-soluble nucleotides. J Biol Chem. 1954 Jul;209(1):23–39. [PubMed] [Google Scholar]
  5. KAUFFMANN F., BRAUN O. H., LUEDERITZ O., STIERLIN H., WESTPHAL O. [Immunochemistry of O-antigens of Enterobacteriaceae. IV. Analysis of the sugar constituents of Escherichia O-antigens]. Zentralbl Bakteriol. 1960 Oct;180:180–188. [PubMed] [Google Scholar]
  6. KAUFFMANN F., KRUEGER L., LUEDERITZ O., WESTPHAL O. [On the immunochemistry of the O-antigen of Enterobacteriaceae. VI. Comparison of the sugar components of polysaccharides from S and R forms of Salmonella]. Zentralbl Bakteriol. 1961 May;182:57–66. [PubMed] [Google Scholar]
  7. KAUFFMANN F., LUEDERITZ O., STIERLIN H., WESTPHAL O. [On the immunochemistry of O antigens of Enterobacteriaceae. I. Analysis of the sugar component of Salmonella O antigens]. Zentralbl Bakteriol. 1960 May;178:442–458. [PubMed] [Google Scholar]
  8. LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L. The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem. 1954 Mar;207(1):1–17. [PubMed] [Google Scholar]
  9. LUDOWIEG J., DORFMAN A. A micromethod for the colorimetric determination of N-acetyl groups in acid mucopolysaccharides. Biochim Biophys Acta. 1960 Feb 26;38:212–218. doi: 10.1016/0006-3002(60)91233-6. [DOI] [PubMed] [Google Scholar]
  10. NIKAIDO H., JOKURA K. Isolation of cytidine diphosphate 3,6-dideoxyhexoses from Salmonella. Biochem Biophys Res Commun. 1961 Nov 29;6:304–309. doi: 10.1016/0006-291x(61)90384-9. [DOI] [PubMed] [Google Scholar]
  11. NIKAIDO H. Studies on the biosynthesis of cell wall polysaccharide in mutant strains of Salmonella. II. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1542–1548. doi: 10.1073/pnas.48.9.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. OKAZAKI R., OKAZAKI T., KURIKI Y. Isolation of thymidine diphosphate rhamnose and a novel thymidine diphosphate sugar compound from Escherichia coli strain B. Biochim Biophys Acta. 1960 Feb 26;38:384–386. doi: 10.1016/0006-3002(60)91271-3. [DOI] [PubMed] [Google Scholar]
  13. OKAZAKI R., OKAZAKIT, STROMINGER J. L., MICHELSON A. M. Thymidine diphosphate 4-keto-6-deoxy-d-glucose, an intermediate in thymidine diphosphate L-rhamnose synthesis in Escherichia coli strains. J Biol Chem. 1962 Oct;237:3014–3026. [PubMed] [Google Scholar]
  14. OKAZAKI R. Studies of deoxyribonucleic acid synthesis and cell growth in the deoxyriboside-requiring bacteria, Lactobacillus acidophilus. III. Identification of thymidine diphosphate rhamnose. Biochim Biophys Acta. 1960 Nov 18;44:478–490. doi: 10.1016/0006-3002(60)91602-4. [DOI] [PubMed] [Google Scholar]
  15. OKAZAKI T., OKAZAKI R., STROMINGER J. L., SUZUKI S. Thymidine diphosphate N-acetylamino sugar compounds from Escherichia coli strains. Biochem Biophys Res Commun. 1962 May 4;7:300–305. doi: 10.1016/0006-291x(62)90195-x. [DOI] [PubMed] [Google Scholar]
  16. PAZUR J. H., SHUEY E. W. The enzymatic synthesis of thymidine diphosphate glucose and its conversion to thymidine diphosphate rhamnose. J Biol Chem. 1961 Jun;236:1780–1785. [PubMed] [Google Scholar]
  17. STROMINGER J. L., SCOTT S. S. Isolation of thymidine diphosphosugar compounds from Escherichia coli. Biochim Biophys Acta. 1959 Oct;35:552–553. doi: 10.1016/0006-3002(59)90412-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES