Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Sep;86(3):563–568. doi: 10.1128/jb.86.3.563-568.1963

INORGANIC PYROPHOSPHATASE OF DESULFOVIBRIO DESULFURICANS

J M Akagi a,1, L Leon Campbell a
PMCID: PMC278472  PMID: 14066437

Abstract

Akagi, J. M. (University of Illinois, Urbana) and L. Leon Campbell. Inorganic pyrophosphatase of Desulfovibrio desulfuricans. J. Bacteriol. 86:563–568. 1963.—The inorganic pyrophosphatase of Desulfovibrio desulfuricans was purified 136-fold by (NH4)2SO4 and ethanol fractionation and diethylaminoethyl cellulose chromatography. Mg++ or Mn++ was required for optimal activity; Co++ was only 65% as effective as Mg++. The optimal ratio of Mg++ to pyrophosphate was 1.0 at pH 8.0. The Ks for the pyrophosphatase was found to be in the region of 1.9 × 10−3m. Sulfhydryl inhibitors and sodium fluoride had no effect on enzyme activity at a concentration of 10−3m. The purified enzyme did not hydrolyze adenosine triphosphate, glycerol phosphate, diphenyl phosphate, or p-nitrophenyl phosphate. Thermal stability studies showed that the enzyme is rapidly inactivated at temperatures above 40 C.

Full text

PDF
563

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akagi J. M., Campbell L. L. STUDIES ON THERMOPHILIC SULFATE-REDUCING BACTERIA III. : Adenosine Triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans. J Bacteriol. 1962 Dec;84(6):1194–1201. doi: 10.1128/jb.84.6.1194-1201.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAKER F. D., PAPISKA H. R., CAMPBELL L. L. Choline fermentation by Desulfovibrio desulfuricans. J Bacteriol. 1962 Nov;84:973–978. doi: 10.1128/jb.84.5.973-978.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLOCH-FRANKENTHAL L. The role of magnesium in the hydrolysis of sodium pyrophosphate by inorganic pyrophosphatase. Biochem J. 1954 May;57(1):87–92. doi: 10.1042/bj0570087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bailey K., Webb E. C. Purification and properties of yeast pyrophosphatase. Biochem J. 1944;38(5):394–398. doi: 10.1042/bj0380394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HEPPEL L. A., HILMOE R. J. Purification of yeast inorganic pyrophosphatase. J Biol Chem. 1951 Sep;192(1):87–94. [PubMed] [Google Scholar]
  6. JOHNSON E. J., JOHNSON M. K. Localization and characterization of an unusually heat resistant inorganic pyrophosphatase from Azotobacter agilis. J Bacteriol. 1959 Dec;78:792–795. doi: 10.1128/jb.78.6.792-795.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KUNITZ M. Crystalline inorganic pyrophosphatase isolated from baker's yeast. J Gen Physiol. 1952 Jan;35(3):423–450. doi: 10.1085/jgp.35.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LEVINSON H. S., SLOAN J. D., Jr, HYATT M. T. Pyrophosphatase activity of Bacillus megaterium spore and vegetative cell extracts. J Bacteriol. 1958 Mar;75(3):291–299. doi: 10.1128/jb.75.3.291-299.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. MARSH C., MILITZER W. Thermal enzymes. VIII. Properties of a heat-stable inorganic pyrophosphatase. Arch Biochem Biophys. 1956 Feb;60(2):439–451. doi: 10.1016/0003-9861(56)90449-0. [DOI] [PubMed] [Google Scholar]
  11. OGINSKY E. L., RUMBAUGH H. L. A cobalt-activated bacterial pyrophosphatase. J Bacteriol. 1955 Jul;70(1):92–98. doi: 10.1128/jb.70.1.92-98.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PECK H. D., Jr Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J Bacteriol. 1961 Dec;82:933–939. doi: 10.1128/jb.82.6.933-939.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PECK H. D., Jr Evidence for the reversibility of the reaction catalyzed by adenosine 5'-phosphosulfate reductase. Biochim Biophys Acta. 1961 May 27;49:621–624. doi: 10.1016/0006-3002(61)90273-6. [DOI] [PubMed] [Google Scholar]
  14. PECK H. D., Jr Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol Rev. 1962 Mar;26:67–94. doi: 10.1128/br.26.1.67-94.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PECK H. D., Jr The role of adenosine-5'-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J Biol Chem. 1962 Jan;237:198–203. [PubMed] [Google Scholar]
  16. Peck H. D. THE ATP-DEPENDENT REDUCTION OF SULFATE WITH HYDROGEN IN EXTRACTS OF DESULFOVIBRIO DESULFURICANS. Proc Natl Acad Sci U S A. 1959 May;45(5):701–708. doi: 10.1073/pnas.45.5.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ROBBINS E. A., STULBERG M. P., BOYER P. D. The magnesium activation of pyrophosphatase. Arch Biochem Biophys. 1955 Jan;54(1):215–222. doi: 10.1016/0003-9861(55)90024-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES