Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2009 Nov 27;5(1):109. doi: 10.1208/pt050115

Solid-state and mechanical properties of aqueous chitosan-amylose starch films plasticized with polyols

Mirna Fernández Cervera 1,, Jyrki Heinämäki 2,, Karin Krogars 2, Anna C Jörgensen 2, Milja Karjalainen 2, Antonio Iraizoz Colarte 1, Jouko Yliruusi 2,3
PMCID: PMC2784848  PMID: 15198536

Abstract

The film-forming ability of chitosan and binary mixtures of chitosan and native amylose corn starch (Hylon VII) was evaluated with free films prepared by a casting/solvent evaporation method. Unplasticized and plasticized free chitosan films in aqueous acetic acid and respective films containing a mixture of chitosan and native amylose starch in acetic acid were prepared. Glycerol, sorbitol, and i-erythritol were used as plasticizers. Solid-state and mechanical properties of the films were studied by powder x-ray diffractometry (XPRD), differential scanning calorimetry (DSC), and a materials testing machine. The films composed of a mixture of chitosan and native amylose starch in acetic acid were clear and colorless. A plasticizer concentration of 20% wt/wt (of the polymer weight) ws sufficient to obtain flexible films with all samples tested. X-ray diffraction patterns and DSC thermograms indicated an amorphous state of the films independent of the type of plasticizer used. In conclusion, incorporation of native amylose com starch into chitosan films improves the consistency and the mechanical properties of the films.

Key words: chitosan, amylose corn starch, erythritol, free films, plasticizer

Full Text

The Full Text of this article is available as a PDF (370.1 KB).

References

  • 1.Karlsen JJ. Excipient properties of chitosan. Manuf Chemist. 1991;62:18–19. [Google Scholar]
  • 2.Muzzarelli RAA, Peter MG, editors. Chitin Handbook. Bremen, Germany: European Chitin Society; 1997. pp. 437–438. [Google Scholar]
  • 3.Lim LY, Wan SC. Heat treatment of chitosan films. Drug Dev Ind Pharm. 1995;21:839–846. doi: 10.3109/03639049509026648. [DOI] [PubMed] [Google Scholar]
  • 4.Remuñán-López C, Bodmeier R. Mechanical and water vapour transmission properties of polysaccharide films. Drug Dev Ind Pharm. 2004;22:1201–1209. doi: 10.3109/03639049609063238. [DOI] [Google Scholar]
  • 5.Bégin A, Van Calsteren MR. Antimicrobial films produced from chitosan. Int J Biol Macromol. 1999;26:63–67. doi: 10.1016/S0141-8130(99)00064-1. [DOI] [PubMed] [Google Scholar]
  • 6.Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck GE. Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm. 2001;27:143–157. doi: 10.1081/DDC-100000481. [DOI] [PubMed] [Google Scholar]
  • 7.Bader HG, Göritz D. Investigations on high amylose corn starch films. Part 1: Wide-angle X-ray scattering (WAXS) Starch/Stärke. 1994;46:229–232. doi: 10.1002/star.19940460606. [DOI] [Google Scholar]
  • 8.Lourdin D, Della Valle G, Colonna P. Influence of amylose contents on starch films and foams. Carbohyd Polyn. 1995;27:261–270. doi: 10.1016/0144-8617(95)00071-2. [DOI] [Google Scholar]
  • 9.Rindlav A, Stading M, Hermansson A-M, Gatenholm P. Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr Polym. 1998;36:217–224. doi: 10.1016/S0144-8617(98)00025-3. [DOI] [Google Scholar]
  • 10.Palviainen P, Heinämäki J, Myllärinen P, Yliruusi J, Forssell P. Corn starches as film formers in aqueous-based film coating. Pharm Dev Technol. 2001;6:351–359. doi: 10.1081/PDT-100002617. [DOI] [PubMed] [Google Scholar]
  • 11.Krogars K, Heinämki J, Karjalainen M, Niskanen A, Leskelä M, Yliruusi J. Enhanced stability of rubbery amylose-rich maize starch films plasticized with a combination of sorbitol and glycerol. Int J Pharm. 2003;251:205–208. doi: 10.1016/S0378-5173(02)00585-9. [DOI] [PubMed] [Google Scholar]
  • 12.Wolff IA, Davis HA, Cluskey JE, Gundrun LJ, Rist CE. Preparation of films from amylose. Ind Eng. Chem. Res. 1951;43:915–919. doi: 10.1021/ie50496a039. [DOI] [Google Scholar]
  • 13.Lenaerts V, Dumoulin Y, Mateescu MA. Controlled-release of theophylline from cross-linked amylose tablets. J Control Release. 1991;15:39–46. doi: 10.1016/0168-3659(91)90101-I. [DOI] [Google Scholar]
  • 14.Lenaerts V, Moussa I, Dumoulin Y, et al. Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Release. 1998;53:225–234. doi: 10.1016/S0168-3659(97)00256-3. [DOI] [PubMed] [Google Scholar]
  • 15.Felt O, Buri P, Gurny R. Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm. 1998;24:979–993. doi: 10.3109/03639049809089942. [DOI] [PubMed] [Google Scholar]
  • 16.Paul W, Shanna CP. Chitosan, a drug carrier for the 21st century: a review. S.T.P. Pharm. Sci. 2000;10:5–22. [Google Scholar]
  • 17.Hou WM, Miyazaki S, Takada M, Komai T. Sustained release of indomethacin from chitosan granules. Chem Pharm Bull (Tokyo) 1985;33:3986–3992. doi: 10.1248/cpb.33.3986. [DOI] [PubMed] [Google Scholar]
  • 18.Mi FL, Her NL, Kaun CY, Wong T, Shyu S. Chitosan tablets for controlled release of theophylline: effect of polymer drug wet or dry blending and anionic-cationic interpolymer. J Appl Polym Sci. 1997;66:2495–2505. doi: 10.1002/(SICI)1097-4628(19971226)66:13<2495::AID-APP12>3.0.CO;2-X. [DOI] [Google Scholar]
  • 19.Gupta KC, Kumar MNV Ravi. Semi-interpenetrating polymer network beads of crosslinked chitosan-glycine for controlled release of clorphenaramine maleate. J Appl Polym Sci. 2000;76:672–683. doi: 10.1002/(SICI)1097-4628(20000502)76:5<672::AID-APP9>3.0.CO;2-F. [DOI] [Google Scholar]
  • 20.Ritthidej GC, Phaechamud T, Koizumi T. Additives in moist-heat-treated chitosan acetate films: a method to extend the release of propranolol hydrochloride coated tablets. S. T. P. Pharma Sci. 2000;10:112–119. [Google Scholar]
  • 21.Shu XZ, Zhu KJ, Weihong Song. Novel pH-sensitive citrate cross-linked chitosan film for drug controlled release. Int J Pharm. 2001;212:19–28. doi: 10.1016/S0378-5173(00)00582-2. [DOI] [PubMed] [Google Scholar]
  • 22.Macleod GS, Collett JH, Fell JT. The potential, use of mixed films of pectin, chitosan and HPMC for biomodal drug release. J Control Release. 1999;58:303–310. doi: 10.1016/S0168-3659(98)00168-0. [DOI] [PubMed] [Google Scholar]
  • 23.Hiorth M, Tho I, Sande A. The formation and permeability of drugs across free pectin and chitosan films prepared by a spraying method. Eur J Pharm Biopharm. 2003;56:175–182. doi: 10.1016/S0939-6411(03)00065-1. [DOI] [PubMed] [Google Scholar]
  • 24.Gidley MJ. Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules. 1989;22:351–358. doi: 10.1021/ma00191a064. [DOI] [Google Scholar]
  • 25.Bail PLe, Bizot H, Buléon A. “B” to “A” type phase transition in short amylose chains. Carbohydrate polymers. 1993;21:99–104. doi: 10.1016/0144-8617(93)90005-O. [DOI] [Google Scholar]
  • 26.Arvanitoyannis I, Kolokuris I, Nakayama A, Yamamoto N, Aiba S. Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose. Carbohydr Polym. 1997;34:9–19. doi: 10.1016/S0144-8617(97)00089-1. [DOI] [Google Scholar]
  • 27.Arvanitoyannis I, Nakayama I, Aiba S. Chitosan and gelatine based edible films: state diagrams, mechanical and permeation properties. Carbohydr Polym. 1998;37:371–382. doi: 10.1016/S0144-8617(98)00083-6. [DOI] [Google Scholar]
  • 28.Forssell P, Lahtinen R, Lahelin M, Myllärinen P. Oxygen permeability of amylose and amylopectin films. Carbohydr Polym. 2002;37:125–129. doi: 10.1016/S0144-8617(01)00175-8. [DOI] [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES