Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Oct;86(4):805–813. doi: 10.1128/jb.86.4.805-813.1963

REPRESSIBLE ACID PHOSPHOMONOESTERASE AND CONSTITUTIVE PYROPHOSPHATASE OF SACCHAROMYCES MELLIS1

Ralph Weimberg a, William L Orton a
PMCID: PMC278518  PMID: 14066478

Abstract

Weimberg, Ralph (Northern Regional Research Laboratory, Peoria, Ill.), and William L. Orton. Repressible acid phosphomonoesterase and constitutive pyrophosphatase of Saccharomyces mellis. J. Bacteriol. 86:805–813. 1963.—Saccharomyces mellis produces a nonspecific acid phosphomonoesterase (pH optimum of 5.5 to 6.0) when grown in a medium devoid of phosphate. Only minimal amounts of this enzyme are present in cells harvested from media containing phosphate. The enzyme requires no cofactors. It is inhibited by such anions as phosphate, arsenate, molybdate, and borate. S. mellis also contains an inorganic pyrophosphatase with a pH optimum of 7.5. The properties of this enzyme are distinctly different from those of the acid phosphomonoesterase. The pyrophosphatase requires Mg++ for activity. This enzyme is constitutive, since it is present in cells regardless of the phosphate content of the growth medium.

Full text

PDF
805

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. HAJNY G. J., HENDERSHOT W. F., PETERSON W. H. Factors affecting glycerol production by a newly isolated osmophilic yeast. Appl Microbiol. 1960 Jan;8:5–11. doi: 10.1128/am.8.1.5-11.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HEPPEL L. A., HARKNESS D. R., HILMOE R. J. A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J Biol Chem. 1962 Mar;237:841–846. [PubMed] [Google Scholar]
  3. HEREDIA C. F., YEN F., SOLS A. Role and formation of the acid phosphatase in yeast. Biochem Biophys Res Commun. 1963 Jan 18;10:14–18. doi: 10.1016/0006-291x(63)90259-6. [DOI] [PubMed] [Google Scholar]
  4. HORIUCHI T., HORIUCHI S., MIZUNO D. A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in Escherichia coli. Nature. 1959 May 30;183(4674):1529–1530. doi: 10.1038/1831529b0. [DOI] [PubMed] [Google Scholar]
  5. MALAMY M., HORECKER B. L. The localization of alkaline phosphatase in E. coli K12. Biochem Biophys Res Commun. 1961 Jun 2;5:104–108. doi: 10.1016/0006-291x(61)90020-1. [DOI] [PubMed] [Google Scholar]
  6. MCLELLAN W. L., Jr, LAMPEN J. O. The acid phosphatase of yeast. Localization and secretion by protoplasts. Biochim Biophys Acta. 1963 Feb 12;67:324–326. doi: 10.1016/0006-3002(63)91832-8. [DOI] [PubMed] [Google Scholar]
  7. PETERSON W. H., HENDERSHOT W. F., HAJNY G. J. Factors affecting production of glycerol and D-arabitol by representative yeasts of the genus Zygosaccharomyces. Appl Microbiol. 1958 Sep;6(5):349–357. doi: 10.1128/am.6.5.349-357.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ROBBINS E. A., STULBERG M. P., BOYER P. D. The magnesium activation of pyrophosphatase. Arch Biochem Biophys. 1955 Jan;54(1):215–222. doi: 10.1016/0003-9861(55)90024-2. [DOI] [PubMed] [Google Scholar]
  9. ROTHSTEIN A., MEIER R. The relationship of the cell surface to metabolism; the role of cell surface phosphatases of yeast. J Cell Physiol. 1949 Aug;34(1):97–114. doi: 10.1002/jcp.1030340107. [DOI] [PubMed] [Google Scholar]
  10. ROUSSOS G. G. Studies on a non-specific acid phosphatase from dwarf-bean seedlings. Biochim Biophys Acta. 1962 Oct 8;64:187–189. doi: 10.1016/0006-3002(62)90776-x. [DOI] [PubMed] [Google Scholar]
  11. SCHMIDT G., BARTSCH G., LAUMONT M. C., HERMAN T., LISS M. Acid phosphatase of bakers' yeast: an enzyme of the external cell surface. Biochemistry. 1963 Jan-Feb;2:126–131. doi: 10.1021/bi00901a022. [DOI] [PubMed] [Google Scholar]
  12. SPENCER J. F., NEISH A. C., BLACKWOOD A. C., SALLANS H. R. Polyhydric alcohol production by osmophilic yeasts: studies with C14-labeled glucose. Can J Biochem Physiol. 1956 May;34(3):495–501. [PubMed] [Google Scholar]
  13. SPENCER J. F., SALLANS H. R. Production of polyhydric alcohols by osmophilic yeasts. Can J Microbiol. 1956 Apr;2(2):72–79. doi: 10.1139/m56-011. [DOI] [PubMed] [Google Scholar]
  14. SPENCER J. F., SHU P. Polyhydric alcohol production by osmophilic yeasts: effect of oxygen tension and inorganic phosphate concentration. Can J Microbiol. 1957 Jun;3(4):559–567. doi: 10.1139/m57-061. [DOI] [PubMed] [Google Scholar]
  15. SUOMALAINEN H., LINKO M., OURA E. Changes in the phosphatase activity of Baker's yeast during the growth phase and location of the phosphatases in the yeast cell. Biochim Biophys Acta. 1960 Jan 29;37:482–490. doi: 10.1016/0006-3002(60)90505-9. [DOI] [PubMed] [Google Scholar]
  16. TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
  17. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  18. WEIMBERG R. Mode of formation of D-arabitol by Saccharomyces mellis. Biochem Biophys Res Commun. 1962 Aug 31;8:442–445. doi: 10.1016/0006-291x(62)90293-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES