Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1960 Mar;79(3):394–405. doi: 10.1128/jb.79.3.394-405.1960

PERMEABILITY OF AZOTOBACTER TO SUCCINATE AND MALATE, 1,2

Roy Repaske a,3, Joan Shroat a, David Allman a,4
PMCID: PMC278699  PMID: 14437412

Full text

PDF
394

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRETT J. T., LARSON A. D., KALLIO R. E. The nature of the adaptive lag of Pseudomonas fluorescens toward citrate. J Bacteriol. 1953 Feb;65(2):187–192. doi: 10.1128/jb.65.2.187-192.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERNLOHR R. W., WEBSTER G. C. Effect of chloramphenicol on protein and nucleic acid metabolism in Azotobacter agilis. J Bacteriol. 1958 Sep;76(3):233–238. doi: 10.1128/jb.76.3.233-238.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRANDT C. L., FREEMAN P. J., SWENSON P. A. The effect of radiations on galactozymase formation in yeast. Science. 1951 Apr 6;113(2936):383–384. doi: 10.1126/science.113.2936.383. [DOI] [PubMed] [Google Scholar]
  4. CAMPBELL J. J. R., STOKES F. N. Tricarboxylic acid cycle in Pseudomonas aeruginosa. J Biol Chem. 1951 Jun;190(2):853–858. [PubMed] [Google Scholar]
  5. CLARKE P. H., MEADOW P. M. Evidence for the occurrence of Permeases for tricarboxylic acid cycle intermediates in Pseudomonas aeruginosa. J Gen Microbiol. 1959 Feb;20(1):144–155. doi: 10.1099/00221287-20-1-144. [DOI] [PubMed] [Google Scholar]
  6. COHEN G. N., MONOD J. Bacterial permeases. Bacteriol Rev. 1957 Sep;21(3):169–194. doi: 10.1128/br.21.3.169-194.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. COHN M. Contributions of studies on the beta-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bacteriol Rev. 1957 Sep;21(3):140–168. doi: 10.1128/br.21.3.140-168.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CREASER E. H. The assimilation of amino acids by bacteria. 22. The effect of 8-azaguanine upon enzyme formation in Staphylococcus aureus. Biochem J. 1956 Nov;64(3):539–545. doi: 10.1042/bj0640539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DE MARS R. I., LURIA S. E., FISHER H., LEVINTHAL C. The production of incomplete bacteriophage particles by the action of proflavine and the properties of the incomplete particles. Ann Inst Pasteur (Paris) 1953 Jan;84(1):113–128. [PubMed] [Google Scholar]
  10. DE MARS R. I. The production of phage-related materials when bacteriophage development in interrupted by proflavine. Virology. 1955 May;1(1):83–99. doi: 10.1016/0042-6822(55)90007-6. [DOI] [PubMed] [Google Scholar]
  11. ENTNER N., STANIER R. Y. Studies on the oxidation of glucose by Pseudomonas fluorescens. J Bacteriol. 1951 Aug;62(2):181–186. doi: 10.1128/jb.62.2.181-186.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GALE E. F., FOLKES J. P. The assimilation of amino acids by bacteria. 21. The effect of nucleic acids on the development of certain enzymic activities in disrupted staphylococcal cells. Biochem J. 1955 Apr;59(4):675–684. doi: 10.1042/bj0590675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GALE E. F., FOLKES J. P. The assimilation of amino-acids by bacteria. XV. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J. 1953 Feb;53(3):493–498. doi: 10.1042/bj0530493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GOUCHER C. R., KOCHOLATY W. Effect of various ions on the respiration of Azotobacter. J Biol Chem. 1954 Dec;211(2):613–620. [PubMed] [Google Scholar]
  15. HAHN F. E., WISSEMAN C. L., Jr Inhibition of adaptive enzyme formation by antimicrobial agents. Proc Soc Exp Biol Med. 1951 Mar;76(3):533–535. doi: 10.3181/00379727-76-18546. [DOI] [PubMed] [Google Scholar]
  16. JOHNSON E. J., COLMER A. R. Further studies on the mode of action of 2, 4-dichlorophenoxyacetic acid on Azotobacter vinelandii as related to magnesium and phosphate. J Bacteriol. 1957 May;73(5):666–669. doi: 10.1128/jb.73.5.666-669.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KELNER A. Growth, respiration, and nucleic acid synthesis in ultraviolet-irradiated and in photoreactivated Escherichia coli. J Bacteriol. 1953 Mar;65(3):252–262. doi: 10.1128/jb.65.3.252-262.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KOGUT M., PODOSKI E. P. Oxidative pathways in a fluorescent Pseudomonas. Biochem J. 1953 Dec;55(5):800–811. doi: 10.1042/bj0550800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LASNITZKI I., MATTHEWS R. E., SMITH J. D. Incorporation of 8-azaguanine into nucleic acids. Nature. 1954 Feb 20;173(4399):346–348. doi: 10.1038/173346a0. [DOI] [PubMed] [Google Scholar]
  20. Morris D. L. Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science. 1948 Mar 5;107(2775):254–255. doi: 10.1126/science.107.2775.254. [DOI] [PubMed] [Google Scholar]
  21. PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
  22. Pardee A. B. NUCLEIC ACID PRECURSORS AND PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1954 May;40(5):263–270. doi: 10.1073/pnas.40.5.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Partridge S. M. Filter-paper partition chromatography of sugars: 1. General description and application to the qualitative analysis of sugars in apple juice, egg white and foetal blood of sheep. with a note by R. G. Westall. Biochem J. 1948;42(2):238–250. doi: 10.1042/bj0420238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. REPASKE R., JOSTEN J. J. Purification and properties of reduced diphosphopyridine nucleotide oxidase from Azotobacter. J Biol Chem. 1958 Aug;233(2):466–471. [PubMed] [Google Scholar]
  25. REPASKE R. Lysis of gram-negative organisms and the role of versene. Biochim Biophys Acta. 1958 Nov;30(2):225–232. doi: 10.1016/0006-3002(58)90044-1. [DOI] [PubMed] [Google Scholar]
  26. REPASKE R. Succinic dehydrogenase of Azotobacter vinelandii. J Bacteriol. 1954 Nov;68(5):555–561. doi: 10.1128/jb.68.5.555-561.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Repaske R., Wilson P. W. Oxidation of Intermediates of the Tricarboxylic Acid Cycle by Extracts of Azotobacter Agile. Proc Natl Acad Sci U S A. 1953 Apr;39(4):225–232. doi: 10.1073/pnas.39.4.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SHILO M., STANIER R. Y. The utilization of the tartaric acids by pseudomonads. J Gen Microbiol. 1957 Apr;16(2):482–490. doi: 10.1099/00221287-16-2-482. [DOI] [PubMed] [Google Scholar]
  29. STONE R. W., WILSON P. W. Respiratory activity of cell-free extracts from azotobacter. J Bacteriol. 1952 May;63(5):605–617. doi: 10.1128/jb.63.5.605-617.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SWIM H. E., KRAMPITZ L. O. Acetic acid oxidation by Escherichia coli; quantitative significance of the tricarboxylic acid cycle. J Bacteriol. 1954 Apr;67(4):426–434. doi: 10.1128/jb.67.4.426-434.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stanier R. Y. Simultaneous Adaptation: A New Technique for the Study of Metabolic Pathways. J Bacteriol. 1947 Sep;54(3):339–348. doi: 10.1128/jb.54.3.339-348.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. WISSEMAN C. L., Jr, SMADEL J. E., HAHN F. E., HOPPS H. E. Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J Bacteriol. 1954 Jun;67(6):662–673. doi: 10.1128/jb.67.6.662-673.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES