Abstract
Lester, Gabriel (Worcester Foundation for Experimental Biology, Shrewsbury, Mass.). Repression and inhibition of indole-synthesizing activity in Neurospora crassa. J. Bacteriol. 82:215–223. 1961.—The possibility of repression and feedback inhibition as regulating mechanisms for the synthesis of tryptophan by Neurospora crassa has been examined in a tryptophan auxotroph which accumulates indole (and indole-glycerol). Indole-synthesizing activity was determined with germinated conidia suspended in medium lacking tryptophan. This activity was almost absent from cells cultured on germination medium containing more than 1.0 μmole l-tryptophan per ml, and increased with decreasing concentrations of l-tryptophan. A similar depression of the formation of indole synthesizing activity was caused by 6-methyl- and d-tryptophan, and less effectively by 5-methyltryptophan; 4-methyltryptophan was slightly stimulatory. Preformed indole synthesizing activity was inhibited by l-tryptophan, 4- and 6-methyltryptophan, and to a lesser extent by 5-methyltryptophan; d-tryptophan had no effect in this respect. The inhibition of preformed activity was partially reversed by anthranilic acid, which is a precursor of indole. However, anthranilic acid did not increase indole synthesis by cells wherein the formation of indole-synthesizing activity had been depressed by culture in the presence of high concentrations of l- or d-tryptophan. These observations indicate that regulation of tryptophan synthesis in N. crassa might result from the action of tryptophan as a repressor and as a feedback inhibitor. The relation of these results to other regulatory systems is discussed.
Full text
PDF![215](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b2/279145/07d95172cfdd/jbacter00471-0081.png)
![216](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b2/279145/15c06a640b5b/jbacter00471-0082.png)
![217](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b2/279145/608b17498c31/jbacter00471-0083.png)
![218](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b2/279145/7bc2ddc59a19/jbacter00471-0084.png)
![219](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b2/279145/b8a04a2d6c84/jbacter00471-0085.png)
![220](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b2/279145/a1600dbdc781/jbacter00471-0086.png)
![221](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b2/279145/dcf412a14f3e/jbacter00471-0087.png)
![222](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b2/279145/f311bb7bcbd4/jbacter00471-0088.png)
![223](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b2/279145/75dda7b2c296/jbacter00471-0089.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N., Garry B. COORDINATE REPRESSION OF THE SYNTHESIS OF FOUR HISTIDINE BIOSYNTHETIC ENZYMES BY HISTIDINE. Proc Natl Acad Sci U S A. 1959 Oct;45(10):1453–1461. doi: 10.1073/pnas.45.10.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CIVEN M., KNOX W. E. The specificity of tryptophan analogues as inducers, substrates, inhibitors, and stabilizers of liver tryptophan pyrrolase. J Biol Chem. 1960 Jun;235:1716–1718. [PubMed] [Google Scholar]
- COHEN G., JACOB F. Sur la répression de la synthèse des enzymes intervenant dans la formation du tryptophane chez Escherichia coll. C R Hebd Seances Acad Sci. 1959 Jun 15;248(24):3490–3492. [PubMed] [Google Scholar]
- DOY C. H., PITTARD A. J. Feedback control of tryptophan biosynthesis. Nature. 1960 Mar 26;185:941–942. doi: 10.1038/185941b0. [DOI] [PubMed] [Google Scholar]
- GIBSON F., YANOFSKY C. The partial purification and properties of indole-3-glycerol phosphate synthetase from Escherichia coli. Biochim Biophys Acta. 1960 Oct 7;43:489–500. doi: 10.1016/0006-3002(60)90471-6. [DOI] [PubMed] [Google Scholar]
- Gross S R, Fein A. Linkage and Function in Neurospora. Genetics. 1960 Jul;45(7):885–904. doi: 10.1093/genetics/45.7.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOROWITZ N. H., SHEN S. C. Neurospora tyrosinase. J Biol Chem. 1952 May;197(2):513–520. [PubMed] [Google Scholar]
- JAKOBY W. B., BONNER D. M. Kynureninase from Neurospora: purification and properties. J Biol Chem. 1953 Dec;205(2):699–707. [PubMed] [Google Scholar]
- LESTER G. Some aspects of tryptophan synthetase formation in Neurospora crassa. J Bacteriol. 1961 Jun;81:964–973. doi: 10.1128/jb.81.6.964-973.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LESTER G., YANOFSKY C. Influence of 3-methylanthranilic and anthranilic acids on the formation of tryptophan synthetase in Escherichia coli. J Bacteriol. 1961 Jan;81:81–90. doi: 10.1128/jb.81.1.81-90.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MONOD J., COHEN-BAZIRE G. L'effet d'inhibition spécifique dans la biosynthèse de la tryptophane-desmase chez Aerobacter aerogenes. C R Hebd Seances Acad Sci. 1953 Feb 2;236(5):530–532. [PubMed] [Google Scholar]
- MOYED H. S., FRIEDMAN M. Interference with feedback control; a mechanism of antimetabolite action. Science. 1959 Apr 10;129(3354):968–969. doi: 10.1126/science.129.3354.968. [DOI] [PubMed] [Google Scholar]
- MOYED H. S. False feedback inhibition: inhibition of tryptophan biosynthesis by 5-methyltryptophan. J Biol Chem. 1960 Apr;235:1098–1102. [PubMed] [Google Scholar]
- PARDEE A. B., PRESTIDGE L. S. Effects of azatryptophan on bacterial enzymes and bacteriophage. Biochim Biophys Acta. 1958 Feb;27(2):330–344. doi: 10.1016/0006-3002(58)90340-8. [DOI] [PubMed] [Google Scholar]
- Suskind S. R., Yanofsky C., Bonner D. M. ALLELIC STRAINS OF Neurospora LACKING TRYPTOPHAN SYNTHETASE: A PRELIMINARY IMMUNOCHEMICAL CHARACTERIZATION. Proc Natl Acad Sci U S A. 1955 Aug 15;41(8):577–582. doi: 10.1073/pnas.41.8.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRUDINGER P. A., COHEN G. N. The effect of 4-methyltryptophan on growth and enzyme systems of Escherichia coli. Biochem J. 1956 Mar;62(3):488–491. doi: 10.1042/bj0620488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel H. J. REPRESSED AND INDUCED ENZYME FORMATION: A UNIFIED HYPOTHESIS. Proc Natl Acad Sci U S A. 1957 Jun 15;43(6):491–496. doi: 10.1073/pnas.43.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WAINWRIGHT S. D., BONNER D. M. On the induced synthesis of an enzyme required for biosynthesis of an essential metabolite: induced kynureninase synthesis in Neurospora crassa. Can J Biochem Physiol. 1959 Jun;37(6):741–750. [PubMed] [Google Scholar]
- YANOFSKY C., RACHMELER M. The exclusion of free indole as an intermediate in the biosynthesis of tryptophan in Neurospora crassa. Biochim Biophys Acta. 1958 Jun;28(3):640–641. doi: 10.1016/0006-3002(58)90533-x. [DOI] [PubMed] [Google Scholar]
- YANOFSKY C. The enzymatic conversion of anthranilic acid to indole. J Biol Chem. 1956 Nov;223(1):171–184. [PubMed] [Google Scholar]
- YANOFSKY C. The tryptophan synthetase system. Bacteriol Rev. 1960 Jun;24(2):221–245. doi: 10.1128/br.24.2.221-245.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YURA T., VOGEL H. J. Pyrroline-5-carboxylate reductase of Neurospora crassa; partial purification and some properties. J Biol Chem. 1959 Feb;234(2):335–338. [PubMed] [Google Scholar]