Abstract
Hirsch, P. (Cornell University, Ithaca, New York), L. Overrein, and M. Alexander. Formation of nitrite and nitrate by actinomycetes and fungi. J. Bacteriol. 82:442–448. 1961.—Nitrite was produced by strains of Mycobacterium, Nocardia, Streptomyces, Micromonospora, and Streptosporangium in media containing ammonium phosphate as the sole nitrogen source. The quantity of nitrite formed was small, and the concentration was affected by pH and by the relative levels of carbon and nitrogen. Aspergillus flavus produced little nitrite from ammonium but formed in excess of 100 parts per million of nitrate-nitrogen. Peroxidase activity and heterotrophic nitrification were reduced in acid conditions, but mycelial development of the fungus was not markedly affected. The inability of A. flavus to form nitrate and nitrite at low pH appears to result from a selective effect of pH upon nitrification rather than being a consequence of the decomposition of nitrogenous intermediates.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BUSH M. T., TOUSTER O., BROCKMAN J. E. The production of beta-nitropropionic acid by a strain of Aspergillus flavus. J Biol Chem. 1951 Feb;188(2):685–693. [PubMed] [Google Scholar]
- CRESSWELL C. F., HEWITT E. J. Oxidation of hydroxylamine by plant enzyme systems. Biochem Biophys Res Commun. 1960 Nov;3:544–548. doi: 10.1016/0006-291x(60)90172-8. [DOI] [PubMed] [Google Scholar]
- EYLAR O. R., Jr, SCHMIDT E. L. A survey of heterotrophic micro-organisms from soil for ability to form nitrite and nitrate. J Gen Microbiol. 1959 Jun;20(3):473–481. doi: 10.1099/00221287-20-3-473. [DOI] [PubMed] [Google Scholar]
- HIRSCH P. [Some additional Actinomycetes existing on air impurities and their classification]. Arch Mikrobiol. 1960;35:391–414. [PubMed] [Google Scholar]
- LITTLE H. N. The oxidation of 2-nitropropane by extracts of pea plants. J Biol Chem. 1957 Nov;229(1):231–238. [PubMed] [Google Scholar]