Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1961 Oct;82(4):609–614. doi: 10.1128/jb.82.4.609-614.1961

GLUCOSE DEHYDROGENATION IN BACTERIA: A COMPARATIVE STUDY

Jens G Hauge 1
PMCID: PMC279216  PMID: 13905390

Abstract

Hauge, Jens G. (National Institute for Public Health, Oslo, Norway). Glucose dehydrogenation in bacteria: a comparative study. J. Bacteriol. 82:609–614. 1961.—Extracts of a series of bacteria reported to convert glucose to gluconic acid via particulate enzyme systems were fractionated by differential centrifugation into heavy particles, light particles, and particle-free supernatant.

Particles from Acetobacter suboxydans, Pseudomonas fluorescens, and Bacterium anitratum had several features in common, notably a high activity with indophenol as acceptor and no significant activity with methylene blue, tetrazolium, diphosphopyridine nucleotide, or triphosphopyridine nucleotide. The pH optima with indophenol were lower than those with oxygen as acceptor. These features are in line with the hypothesis that the particles of these organisms oxidize glucose with a tightly bound niacinamide coenzyme as primary acceptor.

A triphosphopyridine nucleotide-linked glucose dehydrogenase was found present in the supernatant fraction of P. fluorescens.

Azotobacter vinelandii and Aerobacter aerogenes particles oxidized glucose to a measurable degree with oxygen as acceptor only.

Full text

PDF
609

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENTLEY R., SLECHTA L. Oxidation of mono- and disaccharides to aldonic acids by Pseudomonas species. J Bacteriol. 1960 Mar;79:346–355. doi: 10.1128/jb.79.3.346-355.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRISOU J., PREVOT A. R. Etudes de systématique bactérienne. X. Révision des especes réunies dans le genre Achromobacter. Ann Inst Pasteur (Paris) 1954 Jun;86(6):722–728. [PubMed] [Google Scholar]
  3. BRODIE A. F., LIPMANN F. Identification of a gluconolactonase. J Biol Chem. 1955 Feb;212(2):677–685. [PubMed] [Google Scholar]
  4. CHELDELIN V. H., KING T. E. Glucose oxidation and cytochromes in solubilized particulate fractions of Acetobacter suboxydans. J Biol Chem. 1957 Jan;224(1):579–590. [PubMed] [Google Scholar]
  5. COTA-ROBLES E. H., MARR A. G., NILSON E. H. Submicroscopic particles in extracts of Azotobacter agilis. J Bacteriol. 1958 Mar;75(3):243–252. doi: 10.1128/jb.75.3.243-252.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DALBY A., BLACKWOOD A. C. Oxidation of sugars by an enzyme preparation from Aerobacter aerogenes. Can J Microbiol. 1955 Dec;1(9):733–742. doi: 10.1139/m55-087. [DOI] [PubMed] [Google Scholar]
  7. DE LEY J., STOUTHAMER A. J. The mechanism and localization of hexonate metabolism in Acetobacter suboxydans and Acetobacter melanogenum. Biochim Biophys Acta. 1959 Jul;34:171–183. doi: 10.1016/0006-3002(59)90245-8. [DOI] [PubMed] [Google Scholar]
  8. DOWLING J. H., LEVINE H. B. Hexose oxidation by an enzyme system of Malleomyces pseudomallei. J Bacteriol. 1956 Oct;72(4):555–560. doi: 10.1128/jb.72.4.555-560.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAUGE J. G., KING T. E., CHELDELIN V. H. Alternate conversions of glycerol to dihydroxyacetone in Acetobacter sub-oxydans. J Biol Chem. 1955 May;214(1):1–9. [PubMed] [Google Scholar]
  10. HAUGE J. G. Purification and properties of glucose dehydrogenase and cytochrome b from Bacterium anitratum. Biochim Biophys Acta. 1960 Dec 4;45:250–262. doi: 10.1016/0006-3002(60)91449-9. [DOI] [PubMed] [Google Scholar]
  11. NEWTON J. W., WILSON P. W., BURRIS R. H. Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. J Biol Chem. 1953 Sep;204(1):445–451. [PubMed] [Google Scholar]
  12. STEYN-PARVE E. P., BEINERT H. On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. VI. Isolation and properties of stable enzyme-substrate complexes. J Biol Chem. 1958 Oct;233(4):843–852. [PubMed] [Google Scholar]
  13. WOOD W. A., SCHWERDT R. F. Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation. J Biol Chem. 1953 Apr;201(2):501–511. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES