Abstract
MaciasR, Frank M. (Northrop Corporation, Hawthorne, Calif.). Phthiocol and menadione as acetate-replacing factors for Lactobacillus delbrueckii. J. Bacteriol. 82:657–661. 1961.—Lactobacillus delbrueckii (ATCC 9649), when cultured under nitrogen, or in ferrous iron-containing media exposed to air, requires, for the initiation of growth, compounds that are known to behave as electron acceptors. The ferrous iron probably induces what amounts to anaerobic conditions; that is, it blocks access of the organism to oxygen. Several electron carriers, such as methylene blue and naphthoquinones, stimulate growth of the organism in acetate-free media exposed to air. The most active acetate-replacing agent found is phthiocol. Methylene blue does not stimulate growth under nitrogen. It is suggested that the naphthoquinones bring about the initial oxidations required for growth by transferring the electrons to some other constituent of the medium. Growth of the organism in acetate-free media under CO2 indicates that CO2 or its fixation product can behave also as an initial oxidant.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DOLIN M. I. The flavin requirement for DPNH-menadione reductase in Streptococcus faecalis. Biochim Biophys Acta. 1954 Sep;15(1):153–154. doi: 10.1016/0006-3002(54)90114-6. [DOI] [PubMed] [Google Scholar]
- GLICK M. C., ZILLIKEN F., GYORGY P. Supplementary growth promoting effect of 2-methyl-1,4-naphthoquinone of Lactobacillus bifidus var. pennsylvanicus. J Bacteriol. 1959 Feb;77(2):230–236. doi: 10.1128/jb.77.2.230-236.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt G. A. The Gaseous Metabolism of L. pentoaceticus with reference to several representative members of the lactobacillus group. J Bacteriol. 1933 Oct;26(4):341–360. doi: 10.1128/jb.26.4.341-360.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACOBSEN B. K., DAM H. Vitamin K in bacteria. Biochim Biophys Acta. 1960 May 20;40:211–216. doi: 10.1016/0006-3002(60)91344-5. [DOI] [PubMed] [Google Scholar]
- JACOBS N. J., VANDEMARK P. J. Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. J Bacteriol. 1960 Apr;79:532–538. doi: 10.1128/jb.79.4.532-538.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A. The role of fumarate in the respiration of Bacterium coli commune. Biochem J. 1937 Nov;31(11):2095–2124. doi: 10.1042/bj0312095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LESTER R. L., CRANE F. L. The natural occurrence of coenzyme Q and related compounds. J Biol Chem. 1959 Aug;234(8):2169–2175. [PubMed] [Google Scholar]
- LYTLE V. L., ZULICK S. M., O'KANE D. J. Replacement of the pyruvate oxidation factor by carbon dioxide. J Biol Chem. 1951 Apr;189(2):551–555. [PubMed] [Google Scholar]
- PECK H. D., Jr, SMITH O. H., GEST H. Comparative biochemistry of the biological reduction of fumaric acid. Biochim Biophys Acta. 1957 Jul;25(1):142–147. doi: 10.1016/0006-3002(57)90431-6. [DOI] [PubMed] [Google Scholar]
- PLATT T. B., FOSTER E. M. Products of glucose metabolism by homofermentative streptococci under anaerobic conditions. J Bacteriol. 1958 Apr;75(4):453–459. doi: 10.1128/jb.75.4.453-459.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WARRINGA M. G., SMITH O. H., GIUDITTA A., SINGER T. P. Studies on succinic dehydrogenase. VIII. Isolation of a succinic dehydrogenase-fumaric reductase from an obligate anaerobe. J Biol Chem. 1958 Jan;230(1):97–109. [PubMed] [Google Scholar]
- WOSILAIT W. D., NASON A. Pyridine nucleotide-menadione reductase from Escherichia coli. J Biol Chem. 1954 Jun;208(2):785–798. [PubMed] [Google Scholar]
