Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1961 Dec;82(6):867–874. doi: 10.1128/jb.82.6.867-874.1961

ROLE OF ONE-CARBON PRECURSORS IN THE BIOSYNTHESIS OF DEOXYRIBONUCLEIC ACID IN BACTERIOPHAGE-INFECTED AND GROWING CELLS OF ESCHERICHIA COLI1

Eugene W Nester a,2, John Spizizen a
PMCID: PMC279269  PMID: 14479081

Abstract

Nester, Eugene W. (Western Reserve University, Cleveland, Ohio) and John Spizizen. Role of one-carbon precursors in the biosynthesis of deoxyribonucleic acid in bacteriophage-infected and growing cells of Escherichia coli. J. Bacteriol. 82:867–874. 1961.—The ability of growing and T2 bacteriophage-infected cells of Escherichia coli to incorporate serine-3-C14, glycine-2-C14, formate-C14, and formaldehyde-C14 into purine and pyrimidine moieties of deoxyribonucleic acid (DNA) was determined. All four one-carbon precursors are effective contributors to the DNA-purines, but only glycine-2-C14 and serine-3-C14 are incorporated into the side chains of the pyrimidines. In addition, formate-C14 becomes incorporated only into position 8 of the purine ring, whereas isotope from serine-3-C14 and glycine-2-C14 is incorporated equally into the 2 and 8 positions. No qualitative differences were observed in the patterns of incorporation of any one-carbon units in growing or bacteriophage-infected cells. However, the 3-carbon of serine serves as a more effective precursor of the 2 and 8 positions of the DNA purine ring when the cells are infected. Formate-C14 and to a slight extent glycine-2-C14 are somewhat better precursors of these positions when the cells are infected under appropriate conditions.

Full text

PDF
867

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BESSMAN M. J. Deoxyribonucleotide kinases in normal and virus-infected Escherichia coli. J Biol Chem. 1959 Oct;234:2735–2740. [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COHEN S. S., WEED L. L. Some precursors of the 5-hydroxymethylcytosine of T6r+ bacteriophage. J Biol Chem. 1954 Aug;209(2):789–794. [PubMed] [Google Scholar]
  4. FLAKS J. G., COHEN S. S. The enzymic synthesis of 5-hydroxymethyldeoxycytidylic acid. Biochim Biophys Acta. 1957 Sep;25(3):667–668. doi: 10.1016/0006-3002(57)90553-x. [DOI] [PubMed] [Google Scholar]
  5. HATEFI Y., OSBORN M. J., KAY L. D., HUENNEKENS F. M. Hydroxymethyl tetrahydrofolic dehydrogenase. J Biol Chem. 1957 Aug;227(2):637–647. [PubMed] [Google Scholar]
  6. HERSHEY A. D., DIXON J., CHASE M. Nucleic acid economy in bacteria infected with bacteriophage T2. I. Purine and pyrimidine composition. J Gen Physiol. 1953 Jul;36(6):777–789. doi: 10.1085/jgp.36.6.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KIRBY K. S. Some new solvent systems for the paper chromatography of nucleic acid degradation products. Biochim Biophys Acta. 1955 Dec;18(4):575–576. doi: 10.1016/0006-3002(55)90157-8. [DOI] [PubMed] [Google Scholar]
  8. KIT S. The mechanism of deoxyribonucleic acid-thymine biosynthesis by lymphatic tissues and tumors. Cancer Res. 1957 Jan;17(1):56–63. [PubMed] [Google Scholar]
  9. KLENOW H., EMBERLAND R. The enzymatic reaction between ribose 1-phosphate and glucose 1, 6-diphosphate. Arch Biochem Biophys. 1955 Oct;58(2):276–287. doi: 10.1016/0003-9861(55)90129-6. [DOI] [PubMed] [Google Scholar]
  10. KOCH A. L. The kinetics of gycine incorporation by Escherichia coli. J Biol Chem. 1955 Dec;217(2):931–945. [PubMed] [Google Scholar]
  11. Kornberg A., Zimmerman S. B., Kornberg S. R., Josse J. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. INFLUENCE OF BACTERIOPHAGE T2 ON THE SYNTHETIC PATHWAY IN HOST CELLS. Proc Natl Acad Sci U S A. 1959 Jun;45(6):772–785. doi: 10.1073/pnas.45.6.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. REVEL HR B., MAGASANIK B. Utilization of the imidazole carbon 2 of histidine for the biosynthesis of purines in bacteria. J Biol Chem. 1958 Aug;233(2):439–443. [PubMed] [Google Scholar]
  13. SPIZIZEN J. The effect of virus infection of pyruvate metabolism. Biochim Biophys Acta. 1957 Feb;23(2):333–341. doi: 10.1016/0006-3002(57)90336-0. [DOI] [PubMed] [Google Scholar]
  14. WARREN L., BUCHANAN J. M. Biosynthesis of the purines. XIX. 2-Amino-N-ribosylacetamide 5'-phosphate (glycinamide ribotide) transformylase. J Biol Chem. 1957 Dec;229(2):613–626. [PubMed] [Google Scholar]
  15. WARREN L., FLAKS J. G., BUCHANAN J. M. Biosynthesis of the purines. XX. Integration of enzymatic transformylation reactions. J Biol Chem. 1957 Dec;229(2):627–640. [PubMed] [Google Scholar]
  16. WYATT G. R., COHEN S. S. A new pyrimidine base from bacteriophage nucleic acids. Nature. 1952 Dec 20;170(4338):1072–1073. doi: 10.1038/1701072a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES