Abstract
Maretzki, Andrew (Pennsylvania State University, University Park) and M. F. Mallette. Nutritional factors stimulating the formation of lysine decarboxylase in Escherichia coli. J. Bacteriol. 83:720–726. 1962 — Inclusion of complex nitrogen sources in the induction medium was shown to be necessary for the synthesis of appreciable amounts of l-lysine decarboxylase by Escherichia coli B. Hy-case, a commercial acid hydrolyzate of casein, was especially effective in enzyme production, which was assayed manometrically after lysis of the bacteria from without by bacteriophage. Partial fractionation of the Hy-case, identification of the free amino acids, and addition of these amino acids to test media revealed stimulatory effects by methionine, threonine, proline, leucine, and tyrosine. A full complement of amino acids did not match the enzyme levels reached in the presence of Hy-case. Certain peptide fractions obtained from this mixture supplemented the effects of the amino acids in such a way as to suggest direct incorporation of peptide rather than transport or protective roles. Added purines, pyrimidines, iron, and water-soluble vitamins were without effect. Neither carbohydrates nor phosphorylated materials could be detected in the stimulatory fractions.
Full text
PDF![720](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d181/279345/1219ea678a77/jbacter00467-0042.png)
![721](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d181/279345/ad8f8659b2e0/jbacter00467-0043.png)
![722](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d181/279345/fbf8147fa697/jbacter00467-0044.png)
![723](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d181/279345/0acfcb575f56/jbacter00467-0045.png)
![724](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d181/279345/b0a836bb6a64/jbacter00467-0046.png)
![725](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d181/279345/f364001d1deb/jbacter00467-0047.png)
![726](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d181/279345/b329daf4e17b/jbacter00467-0048.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BISERTE G., OSTEUX R. La chromatographie de partage sur papier des dinitrophényl-aminoacides. Bull Soc Chim Biol (Paris) 1951;33(1-2):50–63. [PubMed] [Google Scholar]
- BROWN H., BROWN J. Hemoglobin peptides used in hemoglobin synthesis. Metabolism. 1960 Jun;9:587–593. [PubMed] [Google Scholar]
- Bishop J., Leahy J., Schweet R. FORMATION OF THE PEPTIDE CHAIN OF HEMOGLOBIN. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1030–1038. doi: 10.1073/pnas.46.8.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOX E. N. Peptide requirements for the synthesis of streptococcal proteins. J Biol Chem. 1961 Jan;236:166–171. [PubMed] [Google Scholar]
- Gale E. F., Epps H. M. Studies on bacterial amino-acid decarboxylases: 1. l(+)-lysine decarboxylase. Biochem J. 1944;38(3):232–242. doi: 10.1042/bj0380232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARTMAN R. E., ZIMMERMAN L. N. Effect of the arginine dihydrolase enzyme system on proteinase biosynthesis by Streptococcus faecalis var. liquefaciens. J Bacteriol. 1960 Dec;80:753–761. doi: 10.1128/jb.80.6.753-761.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIHARA H., IKAWA M., SNELL E. E. Peptides and bacterial growth. X. Relation of uptake and hydrolysis to utilization of D-alanine peptides for growth of Streptococcus faecalis. J Biol Chem. 1961 Jan;236:172–176. [PubMed] [Google Scholar]
- KONINGSBERGER V. V., VAN DER GRINTEN C. O., OVERBEEK J. T. Possible intermediates in the biosynthesis of proteins. I. Evidence for the presence of nucleotide-bound carboxyl-activated peptides in baker's yeast. Biochim Biophys Acta. 1957 Dec;26(3):483–490. doi: 10.1016/0006-3002(57)90094-x. [DOI] [PubMed] [Google Scholar]
- MELNYKOVYCH G., SNELL E. E. Nutritional requirements for the formation of arginine decarboxylase in Escherichia coli. J Bacteriol. 1958 Nov;76(5):518–523. doi: 10.1128/jb.76.5.518-523.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAACKE I. D. Protein synthesis in ripening pea seeds. I. Analysis of whole seeds. Biochem J. 1957 May;66(1):101–110. doi: 10.1042/bj0660101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHER I. H., MALLETTE M. F. Purification and study of L-lysine decarboxylase from Escherichia coli B. Arch Biochem Biophys. 1954 Dec;53(2):354–369. doi: 10.1016/0003-9861(54)90417-8. [DOI] [PubMed] [Google Scholar]
- SHER I. H., MALLETTE M. F. The use of bacteriophage in releasing two decarboxylases from Escherichia coli B. J Biol Chem. 1953 Jan;200(1):257–262. [PubMed] [Google Scholar]
- TUBOI S., HUZINO A. Enzymic activation of peptide. Arch Biochem Biophys. 1960 Feb;86:309–310. doi: 10.1016/0003-9861(60)90423-9. [DOI] [PubMed] [Google Scholar]
- TURBA F., LEISMANN A., KLEINHENZ G. Zeitlicher Verlauf des Einbaues von C14-markierten Aminosäuren in die Proteine von Hefezellen. Biochem Z. 1957;329(2):97–103. [PubMed] [Google Scholar]
- TURBA F., PELZER H., SCHUSTER H. Trennung von Nucleinsäure-Abkömmlingen durch Ionenaustausch, Papierchromatographie und Hochspannungs-Ionophorese in Filtrierpapier. Hoppe Seylers Z Physiol Chem. 1954;296(3-4):97–108. [PubMed] [Google Scholar]
- WARNER A. C. The actual nitrogen sources for growth of heterotrophic bacteria in non-limiting media. Biochem J. 1956 Sep;64(1):1–6. doi: 10.1042/bj0640001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEINBAUM G., MALLETTE M. F. Enzyme biosynthesis in Escherichia coli. J Gen Physiol. 1959 Jul 20;42(6):1207–1218. doi: 10.1085/jgp.42.6.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]