Abstract
McCormick, N. G. (University of Washington, Seattle), E. J. Ordal, and H. R. Whiteley. Degradation of pyruvate by Micrococcus lactilyticus. II. Studies of cofactors in the formate-exchange reaction. J. Bacteriol. 83:899–906. 1962.—Enzyme preparations from Micrococcus lactilyticus2 are rendered inactive with respect to formate exchange by treatment with charcoal or Dowex-50, by dialysis, or by fractionation with ammonium sulfate. The activity may be completely restored by a “kochsaft” preparation (BES) obtained from M. lactilyticus and partially restored by similar BES preparations from Escherichia coli and Clostridium butyricum. Diphosphothiamine is required for formate exchange but full activity cannot be restored by known cofactors. Brief exposure to increased temperatures, air, extremes of pH, and absorption with charcoal and Dowex-50 decrease the cofactor activity of BES preparations. The addition of BES preparations from E. coli and Streptococcus faecalis causes a shift in the degradation of pyruvate by extracts of M. lactilyticus from the phosphoroclastic cleavage (to acetyl phosphate and formate) to the dismutation of pyruvate (to lactate, acetate, and carbon dioxide).
C. cylindrosporum was found to mediate the formate-exchange reaction; the activity of crude extracts was stimulated by M. lactilyticus and C. butyricum BES preparations. M. lactilyticus BES also increased the formate-exchange activity of extracts of E. coli.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASNIS R. E., FRITZ M., GLICK M. C. Some observations on the phosphoroclastic dissimilation of pyruvate by cell-free extracts of Escherichia coli. Biochim Biophys Acta. 1956 Dec;22(3):578–579. doi: 10.1016/0006-3002(56)90074-9. [DOI] [PubMed] [Google Scholar]
- CHANTRENNE H., LIPMANN F. Coenzyme A dependence and acetyl donor function of the pyruvate-formate exchange system. J Biol Chem. 1950 Dec;187(2):757–767. [PubMed] [Google Scholar]
- Foubert E. L., Douglas H. C. Studies on the Anaerobic Micrococci: I. Taxonomic Considerations. J Bacteriol. 1948 Jul;56(1):25–34. [PMC free article] [PubMed] [Google Scholar]
- GUNSALUS I. C. The chemistry and function of the pyruvate oxidation factor (lipoic acid). J Cell Physiol Suppl. 1953 Mar;41(Suppl 1):113–136. doi: 10.1002/jcp.1030410409. [DOI] [PubMed] [Google Scholar]
- MORTLOCK R. P., VALENTINE R. C., WOLFE R. S. Carbon dioxide activation in the pyruvate clastic system of Clostridium butyricum. J Biol Chem. 1959 Jul;234(7):1653–1656. [PubMed] [Google Scholar]
- McCormick N. G., Ordal E. J., Whiteley H. R. DEGRADATION OF PYRUVATE BY MICROCOCCUS LACTILYTICUS I. : General Properties of the Formate-Exchange Reaction. J Bacteriol. 1962 Apr;83(4):887–898. doi: 10.1128/jb.83.4.887-898.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOVELLI G. D. The exchange of H14COOH with the carboxyl group of pyruvate by Clostridium butylicum and Micrococcus lactilyticus. Biochim Biophys Acta. 1955 Dec;18(4):594–596. doi: 10.1016/0006-3002(55)90170-0. [DOI] [PubMed] [Google Scholar]
- PEEL J. L. The breakdown of pyruvate by cell-free extracts of the rumen micro-organism LC. Biochem J. 1960 Mar;74:525–541. doi: 10.1042/bj0740525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRECKER H. J. Formate fixation in pyruvate by Escherichia coli. J Biol Chem. 1951 Apr;189(2):815–830. [PubMed] [Google Scholar]
- WHITELEY H. R., OSBORN M. J., HUENNEKENS F. M. Purification and properties of the formate-activating enzyme from Micrococcus aerogenes. J Biol Chem. 1959 Jun;234(6):1538–1543. [PubMed] [Google Scholar]
- WOLFE R. S., O'KANE D. J. Cofactors of the phosphoroclastic reaction of Clostridium butyricum. J Biol Chem. 1953 Dec;205(2):755–765. [PubMed] [Google Scholar]