Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Jan;85(2):632–636. doi: 10.1073/pnas.85.2.632

Transcytotic pathway for blood-borne protein through the blood-brain barrier.

R D Broadwell 1, B J Balin 1, M Salcman 1
PMCID: PMC279605  PMID: 2448779

Abstract

The transcytosis of blood-borne protein through the blood-brain barrier, a consequence of recruitment of the Golgi complex within nonfenestrated cerebral endothelia, was identified in mice and rats injected intravenously with the lectin wheat germ agglutinin (WGA) conjugated to the enzymatic tracer horseradish peroxidase (HRP). WGA enters cells by adsorptive endocytosis after binding to specific cell surface oligosaccharides. Blood-borne WGA-HRP labeled the entire cerebrovascular tree from the luminal side 5 min after injection; pericytes, located on the abluminal surface of cerebral endothelia, sequestered the lectin conjugate 6 hr later. Endothelial organelles harboring WGA-HRP 3 hr after injection included the luminal plasmalemma, endocytic vesicles, endosomes (prelysosomes), secondary lysosomes, and the Golgi complex. The peroxidase reaction product labeled the abluminal surface of cerebral endothelia and occupied the perivascular clefts by 6 hr. Within 12 hr, organelles labeled with WGA-HRP in pericytes were identical to those observed in endothelia. Blood-borne native HRP, entering cells by bulk-phase endocytosis, was neither directed to the Golgi complex nor transferred across nonfenestrated cerebral endothelia. The results suggest that blood-borne molecules taken into the cerebral endothelium by adsorptive endocytosis and conveyed to the Golgi complex can, either by themselves or as vehicles for other molecules excluded from the brain, undergo transcytosis through the blood-brain barrier without compromising the integrity of the barrier.

Full text

PDF
632

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balin B. J., Broadwell R. D. Lectin-labeled membrane is transferred to the Golgi complex in mouse pituitary cells in vivo. J Histochem Cytochem. 1987 Apr;35(4):489–498. doi: 10.1177/35.4.2434560. [DOI] [PubMed] [Google Scholar]
  2. Balin B. J., Broadwell R. D., Salcman M., el-Kalliny M. Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol. 1986 Sep 8;251(2):260–280. doi: 10.1002/cne.902510209. [DOI] [PubMed] [Google Scholar]
  3. Beggs J. L., Waggener J. D. Transendothelial vesicular transport of protein following compression injury to the spinal cord. Lab Invest. 1976 Apr;34(4):428–439. [PubMed] [Google Scholar]
  4. Bennett G., Kan F. W., O'Shaughnessy D. The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H]N-acetylmannosamine. II. Observations in tissues other than liver. J Cell Biol. 1981 Jan;88(1):16–28. doi: 10.1083/jcb.88.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett G., O'Shaughnessy D. The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H]N-acetylmannosamine. I. Observations in hepatocytes. J Cell Biol. 1981 Jan;88(1):1–15. doi: 10.1083/jcb.88.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broadwell R. D., Balin B. J. Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. J Comp Neurol. 1985 Dec 22;242(4):632–650. doi: 10.1002/cne.902420410. [DOI] [PubMed] [Google Scholar]
  7. Broadwell R. D., Balin B. J., Salcman M., Kaplan R. S. Brain-blood barrier? Yes and no. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7352–7356. doi: 10.1073/pnas.80.23.7352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Broadwell R. D., Brightman M. W. Horseradish peroxidase: a tool for study of the neuroendocrine cell and other peptide-secreting cells. Methods Enzymol. 1983;103:187–218. doi: 10.1016/s0076-6879(83)03013-x. [DOI] [PubMed] [Google Scholar]
  9. Broadwell R. D., Cataldo A. M., Balin B. J. Further studies of the secretory process in hypothalamo-neurohypophysial neurons: an analysis using immunocytochemistry, wheat germ agglutinin-peroxidase, and native peroxidase. J Comp Neurol. 1984 Sep 10;228(2):155–167. doi: 10.1002/cne.902280203. [DOI] [PubMed] [Google Scholar]
  10. Broadwell R. D., Charlton H. M., Balin B. J., Salcman M. Angioarchitecture of the CNS, pituitary gland, and intracerebral grafts revealed with peroxidase cytochemistry. J Comp Neurol. 1987 Jun 1;260(1):47–62. doi: 10.1002/cne.902600105. [DOI] [PubMed] [Google Scholar]
  11. Broadwell R. D., Oliver C. An enzyme cytochemical study of the endocytic pathways in anterior pituitary cells of the mouse in vivo. J Histochem Cytochem. 1983 Feb;31(2):325–335. doi: 10.1177/31.2.6131918. [DOI] [PubMed] [Google Scholar]
  12. Broadwell R. D., Salcman M. Expanding the definition of the blood-brain barrier to protein. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7820–7824. doi: 10.1073/pnas.78.12.7820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coomber B. L., Stewart P. A. Three-dimensional reconstruction of vesicles in endothelium of blood-brain barrier versus highly permeable microvessels. Anat Rec. 1986 Jul;215(3):256–261. doi: 10.1002/ar.1092150308. [DOI] [PubMed] [Google Scholar]
  14. Dautry-Varsat A., Lodish H. F. How receptors bring proteins and particles into cells. Sci Am. 1984 May;250(5):52–58. doi: 10.1038/scientificamerican0584-52. [DOI] [PubMed] [Google Scholar]
  15. Deurs B. V. Vesicular transport of horseradish peroxidase from brain to blood in segments of the cerebral microvasculature in adult mice. Brain Res. 1977 Mar 18;124(1):1–8. doi: 10.1016/0006-8993(77)90859-9. [DOI] [PubMed] [Google Scholar]
  16. Duffy K. R., Pardridge W. M. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 1987 Sep 8;420(1):32–38. doi: 10.1016/0006-8993(87)90236-8. [DOI] [PubMed] [Google Scholar]
  17. Farquhar M. G. Multiple pathways of exocytosis, endocytosis, and membrane recycling: validation of a Golgi route. Fed Proc. 1983 May 15;42(8):2407–2413. [PubMed] [Google Scholar]
  18. Gonatas N. K., Avrameas S. Detection of plasma membrane carbohydrates with lectin peroxidase conjugates. J Cell Biol. 1973 Nov;59(2 Pt 1):436–443. doi: 10.1083/jcb.59.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gonatas N. K., Kim S. U., Stieber A., Avrameas S. Internalization of lectins in neuronal GERL. J Cell Biol. 1977 Apr;73(1):1–13. doi: 10.1083/jcb.73.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gonatas N. K. Presidential address. The role of neuronal golgi apparatus in a centripetal membrane vesicular traffic. J Neuropathol Exp Neurol. 1982 Jan;41(1):6–17. doi: 10.1097/00005072-198201000-00002. [DOI] [PubMed] [Google Scholar]
  21. Griffiths G., Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986 Oct 24;234(4775):438–443. doi: 10.1126/science.2945253. [DOI] [PubMed] [Google Scholar]
  22. O'Sullivan M. J., Gnemmi E., Morris D., Chieregatti G., Simmons M., Simmonds A. D., Bridges J. W., Marks V. A simple method for the preparation of enzyme-antibody conjugates. FEBS Lett. 1978 Nov 15;95(2):311–313. doi: 10.1016/0014-5793(78)81018-7. [DOI] [PubMed] [Google Scholar]
  23. Pardridge W. M., Eisenberg J., Yang J. Human blood-brain barrier insulin receptor. J Neurochem. 1985 Jun;44(6):1771–1778. doi: 10.1111/j.1471-4159.1985.tb07167.x. [DOI] [PubMed] [Google Scholar]
  24. Petito C. K. Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol. 1979 May;38(3):222–234. doi: 10.1097/00005072-197905000-00003. [DOI] [PubMed] [Google Scholar]
  25. Povlishock J. T., Becker D. P., Sullivan H. G., Miller J. D. Vascular permeability alterations to horseradish peroxidase in experimental brain injury. Brain Res. 1978 Sep 22;153(2):223–239. doi: 10.1016/0006-8993(78)90404-3. [DOI] [PubMed] [Google Scholar]
  26. Rodewald R., Kraehenbuhl J. P. Receptor-mediated transport of IgG. J Cell Biol. 1984 Jul;99(1 Pt 2):159s–164s. doi: 10.1083/jcb.99.1.159s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ruda M., Coulter J. D. Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry. Brain Res. 1982 Oct 14;249(2):237–246. doi: 10.1016/0006-8993(82)90057-9. [DOI] [PubMed] [Google Scholar]
  28. Schwab M. E., Suda K., Thoenen H. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol. 1979 Sep;82(3):798–810. doi: 10.1083/jcb.82.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Snider M. D., Rogers O. C. Intracellular movement of cell surface receptors after endocytosis: resialylation of asialo-transferrin receptor in human erythroleukemia cells. J Cell Biol. 1985 Mar;100(3):826–834. doi: 10.1083/jcb.100.3.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trojanowski J. Q., Schmidt M. L. Interneuronal transfer of axonally transported proteins: studies with HRP and HRP conjugates of wheat germ agglutinin, cholera toxin and the B subunit of cholera toxin. Brain Res. 1984 Oct 8;311(2):366–369. doi: 10.1016/0006-8993(84)90102-1. [DOI] [PubMed] [Google Scholar]
  32. Wagner H. J., Pilgrim C., Brandl J. Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol. 1974 Apr 30;27(4):299–315. doi: 10.1007/BF00690695. [DOI] [PubMed] [Google Scholar]
  33. Westergaard E., Brightman M. W. Transport of proteins across normal cerebral arterioles. J Comp Neurol. 1973 Nov 1;152(1):17–44. doi: 10.1002/cne.901520103. [DOI] [PubMed] [Google Scholar]
  34. Westergaard E. The blood-brain barrier to horseradish peroxidase under normal and experimental conditions. Acta Neuropathol. 1977 Aug 31;39(3):181–187. doi: 10.1007/BF00691695. [DOI] [PubMed] [Google Scholar]
  35. Woods J. W., Doriaux M., Farquhar M. G. Transferrin receptors recycle to cis and middle as well as trans Golgi cisternae in Ig-secreting myeloma cells. J Cell Biol. 1986 Jul;103(1):277–286. doi: 10.1083/jcb.103.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES