Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Feb;85(3):684–688. doi: 10.1073/pnas.85.3.684

Complex between carboxypeptidase A and a hydrated ketomethylene substrate analogue.

G Shoham 1, D W Christianson 1, D A Oren 1
PMCID: PMC279619  PMID: 3422451

Abstract

The complex of carboxypeptidase A (CPA) with 5-amino-(N-t-butoxycarbonyl)-2-benzyl-4-oxo-6-phenylhexanoic acid (BBP), the ketomethylene substrate analogue of the peptide substrate N-(t-butoxycarbonyl)-L-phenylalanyl-L-phenylalanine, was studied by x-ray crystallographic methods. Interestingly, the enzyme specifically binds only one of four stereoisomers of BBP that were present in the buffer solution in which the CPA crystals were soaked. Furthermore, the species observed to bind to the enzyme is the hydrated form of the ketone. This is rather surprising since the hydrated form of BBP is expected to be present in aqueous solution at a concentration of less than 0.2%. Hence, the enzyme-inhibitor complex is most stable with a species resembling a structure along the reaction coordinate of a chemical reaction rather than a species resembling a reactant or a product. Important structural information regarding the catalytic conformations of active-site residues spanning the S'1-S2 subsites of the enzyme is provided from the results of these x-ray diffraction experiments. The structure of the CPA-hydrated BBP complex provides support for a promoted-water hydrolytic mechanism, although it is not certain whether the enzyme has actually participated in the hydration reaction at the ketone carbonyl of BBP.

Full text

PDF
684

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramowitz N., Schechter I., Berger A. On the size of the active site in proteases. II. Carboxypeptidase-A. Biochem Biophys Res Commun. 1967 Dec 29;29(6):862–867. doi: 10.1016/0006-291x(67)90299-9. [DOI] [PubMed] [Google Scholar]
  2. Auld D. S., Holmquist B. Carboxypeptidase A. Differences in the mechanisms of ester and peptide hydrolysis. Biochemistry. 1974 Oct 8;13(21):4355–4361. doi: 10.1021/bi00718a018. [DOI] [PubMed] [Google Scholar]
  3. Bradshaw R. A., Ericsson L. H., Walsh K. A., Neurath H. The amino acid sequence of bovine carboxypeptidase A. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1389–1394. doi: 10.1073/pnas.63.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brayer G. D., Delbaere L. T., James M. N., Bauer C. A., Thompson R. C. Crystallographic and kinetic investigations of the covalent complex formed by a specific tetrapeptide aldehyde and the serine protease from Streptomyces griseus. Proc Natl Acad Sci U S A. 1979 Jan;76(1):96–100. doi: 10.1073/pnas.76.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breslow R., Wernick D. L. Unified picture of mechanisms of catalysis by carboxypeptidase A. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1303–1307. doi: 10.1073/pnas.74.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burley S. K., Petsko G. A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science. 1985 Jul 5;229(4708):23–28. doi: 10.1126/science.3892686. [DOI] [PubMed] [Google Scholar]
  7. Christianson D. W., David P. R., Lipscomb W. N. Mechanism of carboxypeptidase A: hydration of a ketonic substrate analogue. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1512–1515. doi: 10.1073/pnas.84.6.1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Christianson D. W., Lipscomb W. N. Binding of a possible transition state analogue to the active site of carboxypeptidase A. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6840–6844. doi: 10.1073/pnas.82.20.6840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Christianson D. W., Lipscomb W. N. X-ray crystallographic investigation of substrate binding to carboxypeptidase A at subzero temperature. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7568–7572. doi: 10.1073/pnas.83.20.7568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cleland W. W. Determining the chemical mechanisms of enzyme-catalyzed reactions by kinetic studies. Adv Enzymol Relat Areas Mol Biol. 1977;45:273–387. doi: 10.1002/9780470122907.ch4. [DOI] [PubMed] [Google Scholar]
  11. Galardy R. E., Kortylewicz Z. P. Inhibition of carboxypeptidase A by aldehyde and ketone substrate analogues. Biochemistry. 1984 Apr 24;23(9):2083–2087. doi: 10.1021/bi00304a032. [DOI] [PubMed] [Google Scholar]
  12. Gelb M. H., Svaren J. P., Abeles R. H. Fluoro ketone inhibitors of hydrolytic enzymes. Biochemistry. 1985 Apr 9;24(8):1813–1817. doi: 10.1021/bi00329a001. [DOI] [PubMed] [Google Scholar]
  13. Grobelny D., Goli U. B., Galardy R. E. Inhibition of carboxypeptidase A by ketones and alcohols that are isosteric with peptide substrates. Biochemistry. 1985 Dec 17;24(26):7612–7617. doi: 10.1021/bi00347a017. [DOI] [PubMed] [Google Scholar]
  14. Lewis C. A., Jr, Wolfenden R. Antiproteolytic aldehydes and ketones: substituent and secondary deuterium isotope effects on equilibrium addition of water and other nucleophiles. Biochemistry. 1977 Nov 1;16(22):4886–4890. doi: 10.1021/bi00641a022. [DOI] [PubMed] [Google Scholar]
  15. Makinen M. W., Kuo L. C., Dymowski J. J., Jaffer S. Catalytic role of the metal ion of carboxypeptidase A in ester hydrolysis. J Biol Chem. 1979 Jan 25;254(2):356–366. [PubMed] [Google Scholar]
  16. Pocker Y., Sarkanen S. Carbonic anhydrase: structure catalytic versatility, and inhibition. Adv Enzymol Relat Areas Mol Biol. 1978;47:149–274. doi: 10.1002/9780470122921.ch3. [DOI] [PubMed] [Google Scholar]
  17. Quiocho F. A., Lipscomb W. N. Carboxypeptidase A: a protein and an enzyme. Adv Protein Chem. 1971;25:1–78. doi: 10.1016/s0065-3233(08)60278-8. [DOI] [PubMed] [Google Scholar]
  18. Rees D. C., Lewis M., Lipscomb W. N. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. doi: 10.1016/s0022-2836(83)80024-2. [DOI] [PubMed] [Google Scholar]
  19. Rees D. C., Lipscomb W. N. Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 A resolution. J Mol Biol. 1982 Sep 25;160(3):475–498. doi: 10.1016/0022-2836(82)90309-6. [DOI] [PubMed] [Google Scholar]
  20. Riordan J. F. Functional arginyl residues in carboxypeptidase A. Modification with butanedione. Biochemistry. 1973 Sep 25;12(20):3915–3923. doi: 10.1021/bi00744a020. [DOI] [PubMed] [Google Scholar]
  21. Shoham G., Rees D. C., Lipscomb W. N. Effects of pH on the structure and function of carboxypeptidase A: crystallographic studies. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7767–7771. doi: 10.1073/pnas.81.24.7767. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES