Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Feb;85(3):699–703. doi: 10.1073/pnas.85.3.699

Simultaneous transfection of COS-1 cells with mitochondrial and microsomal steroid hydroxylases: incorporation of a steroidogenic pathway into nonsteroidogenic cells.

M X Zuber 1, J I Mason 1, E R Simpson 1, M R Waterman 1
PMCID: PMC279622  PMID: 2829199

Abstract

Transfected, nonsteroidogenic COS-1 cells derived from monkey kidney are found to be capable of supporting the initial and rate-limiting step common to all steroidogenic pathways, the side-chain cleavage of cholesterol to produce pregnenolone. Endogenous COS-1 kidney cell renodoxin reductase and renodoxin are able to sustain low levels of this activity catalyzed by bovine cholesterol side-chain cleavage cytochrome P450 (P450scc) whose synthesis is directed by a transfected plasmid containing P450scc cDNA. Double transfection with both P450scc and adrenodoxin plasmids leads to greater pregnenolone production and indicates that adrenodoxin plays a role as a substrate for this reaction or that bovine adrenodoxin serves as a better electron donor than the endogenous iron-sulfur protein renodoxin. Also it is found that both the bovine adrenodoxin and P450scc precursor proteins are proteolytically processed upon their uptake by COS-1 cell mitochondria to forms having the same electrophoretic mobility as mature bovine adrenodoxin and P450scc. Following triple transfection of COS-1 cells with P450scc, adrenodoxin, and 17 alpha-hydroxylase cytochrome P450 plasmids, pregnenolone produced in mitochondria by the side-chain cleavage reaction can be further metabolized in the endoplasmic reticulum to 17 alpha-hydroxypregnenolone and dehydroepiandrosterone. Although this functional steroidogenic pathway can be incorporated into this nonsteroidogenic cell type, it is found to be nonresponsive to cAMP, a potent activator of steroid hormone biosynthesis in adrenal cortex, testis, and ovary. Thus the cellular mechanisms necessary to support both microsomal and mitochondrial steroid hydroxylase activities appear not to be tissue specific, whereas the acute cAMP-dependent regulation of steroidogenesis is not present in transformed kidney (COS-1) cells.

Full text

PDF
699

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckett G. J., Boyd G. S. Purification and control of bovine adrenal cortical cholesterol ester hydrolase and evidence for the activation of the enzyme by a phosphorylation. Eur J Biochem. 1977 Jan;72(2):223–233. doi: 10.1111/j.1432-1033.1977.tb11243.x. [DOI] [PubMed] [Google Scholar]
  2. Bhasker C. R., Okamura T., Simpson E. R., Waterman M. R. Mature bovine adrenodoxin contains a 14-amino-acid COOH-terminal extension originally detected by cDNA sequencing. Eur J Biochem. 1987 Apr 1;164(1):21–25. doi: 10.1111/j.1432-1033.1987.tb10986.x. [DOI] [PubMed] [Google Scholar]
  3. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  4. Chanderbhan R., Noland B. J., Scallen T. J., Vahouny G. V. Sterol carrier protein2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis. J Biol Chem. 1982 Aug 10;257(15):8928–8934. [PubMed] [Google Scholar]
  5. Driscoll W. J., Omdahl J. L. Kidney and adrenal mitochondria contain two forms of NADPH-adrenodoxin reductase-dependent iron-sulfur proteins. Isolation of the two porcine renal ferredoxins. J Biol Chem. 1986 Mar 25;261(9):4122–4125. [PubMed] [Google Scholar]
  6. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  7. John M. E., John M. C., Ashley P., MacDonald R. J., Simpson E. R., Waterman M. R. Identification and characterization of cDNA clones specific for cholesterol side-chain cleavage cytochrome P-450. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5628–5632. doi: 10.1073/pnas.81.18.5628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kramer R. E., Du Bois R. N., Simpson E. R., Anderson C. M., Kashiwagi K., Lambeth J. D., Jefcoate C. R., Waterman M. R. Cell-free synthesis of precursor forms of mitochondrial steroid hydroxylase enzymes of the bovine adrenal cortex. Arch Biochem Biophys. 1982 May;215(2):478–485. doi: 10.1016/0003-9861(82)90106-0. [DOI] [PubMed] [Google Scholar]
  9. Mason J. I., Hemsell P. G., Korte K. Steroidogenesis in dispersed cells of human fetal adrenal. J Clin Endocrinol Metab. 1983 May;56(5):1057–1062. doi: 10.1210/jcem-56-5-1057. [DOI] [PubMed] [Google Scholar]
  10. Matocha M. F., Waterman M. R. Discriminatory processing of the precursor forms of cytochrome P-450scc and adrenodoxin by adrenocortical and heart mitochondria. J Biol Chem. 1984 Jul 10;259(13):8672–8678. [PubMed] [Google Scholar]
  11. Matocha M. F., Waterman M. R. Import and processing of P-450SCC and P-450(11) beta precursors by corpus luteal mitochondria: a processing pathway recognizing homologous and heterologous precursors. Arch Biochem Biophys. 1986 Nov 1;250(2):456–460. doi: 10.1016/0003-9861(86)90749-6. [DOI] [PubMed] [Google Scholar]
  12. Morohashi K., Fujii-Kuriyama Y., Okada Y., Sogawa K., Hirose T., Inayama S., Omura T. Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P-450(SCC) of bovine adrenal cortex. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4647–4651. doi: 10.1073/pnas.81.15.4647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nebert D. W., Adesnik M., Coon M. J., Estabrook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B., Levin W. The P450 gene superfamily: recommended nomenclature. DNA. 1987 Feb;6(1):1–11. doi: 10.1089/dna.1987.6.1. [DOI] [PubMed] [Google Scholar]
  14. Ogishima T., Okada Y., Omura T. Import and processing of the precursor of cytochrome P-450(SCC) by bovine adrenal cortex mitochondria. J Biochem. 1985 Sep;98(3):781–791. doi: 10.1093/oxfordjournals.jbchem.a135335. [DOI] [PubMed] [Google Scholar]
  15. Okamura T., John M. E., Zuber M. X., Simpson E. R., Waterman M. R. Molecular cloning and amino acid sequence of the precursor form of bovine adrenodoxin: evidence for a previously unidentified COOH-terminal peptide. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5705–5709. doi: 10.1073/pnas.82.17.5705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Okayama H., Berg P. A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. Mol Cell Biol. 1983 Feb;3(2):280–289. doi: 10.1128/mcb.3.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pedersen R. C., Brownie A. C. Cholesterol side-chain cleavage in the rat adrenal cortex: isolation of a cycloheximide-sensitive activator peptide. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1882–1886. doi: 10.1073/pnas.80.7.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Privalle C. T., Crivello J. F., Jefcoate C. R. Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc Natl Acad Sci U S A. 1983 Feb;80(3):702–706. doi: 10.1073/pnas.80.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. TALALAY P., DOBSON M. M. Purification and properties of a beta-hydroxysteroid dehydrogenase. J Biol Chem. 1953 Dec;205(2):823–837. [PubMed] [Google Scholar]
  20. Vahouny G. V., Chanderbhan R., Noland B. J., Irwin D., Dennis P., Lambeth J. D., Scallen T. J. Sterol carrier protein2. Identification of adrenal sterol carrier protein2 and site of action for mitochondrial cholesterol utilization. J Biol Chem. 1983 Oct 10;258(19):11731–11737. [PubMed] [Google Scholar]
  21. Waterman M. R., Simpson E. R. Regulation of the biosynthesis of cytochromes P-450 involved in steroid hormone synthesis. Mol Cell Endocrinol. 1985 Feb;39(2):81–89. doi: 10.1016/0303-7207(85)90123-6. [DOI] [PubMed] [Google Scholar]
  22. Zuber M. X., John M. E., Okamura T., Simpson E. R., Waterman M. R. Bovine adrenocortical cytochrome P-450(17 alpha). Regulation of gene expression by ACTH and elucidation of primary sequence. J Biol Chem. 1986 Feb 15;261(5):2475–2482. [PubMed] [Google Scholar]
  23. Zuber M. X., Simpson E. R., Hall P. F., Waterman M. R. Effects of adrenocorticotropin on 17 alpha-hydroxylase activity and cytochrome P-450(17 alpha) synthesis in bovine adrenocortical cells. J Biol Chem. 1985 Feb 10;260(3):1842–1848. [PubMed] [Google Scholar]
  24. Zuber M. X., Simpson E. R., Waterman M. R. Expression of bovine 17 alpha-hydroxylase cytochrome P-450 cDNA in nonsteroidogenic (COS 1) cells. Science. 1986 Dec 5;234(4781):1258–1261. doi: 10.1126/science.3535074. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES