Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Feb;85(4):971–974. doi: 10.1073/pnas.85.4.971

Surface coil localization of 31P NMR signals from orthotopic human kidney and liver.

T Jue 1, D L Rothman 1, J A Lohman 1, E W Hughes 1, C C Hanstock 1, R G Shulman 1
PMCID: PMC279682  PMID: 3422493

Abstract

By incorporating the hyperbolic secant inversion pulses with the image-selected in vivo spectroscopy localization technique and by applying a gradient-echo imaging method, we have selected only the 31P NMR signals from orthotopic human kidney and liver, using a single concentric 1H/31P surface coil. Corresponding to the experimental results on animal studies, the phosphocreatine signal is dramatically reduced in the localized spectra. Our localization strategy also allows us to shim easily on the well-defined volume of interest and leads to high-resolution spectra that exhibit multiplet structure. Our results indicate that we can obtain localized signals from deep small organs and point the way for other human metabolism studies.

Full text

PDF
971

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendall M. R., Pegg D. T. Theoretical description of depth pulse sequences, on and off resonance, including improvements and extensions thereof. Magn Reson Med. 1985 Apr;2(2):91–113. doi: 10.1002/mrm.1910020202. [DOI] [PubMed] [Google Scholar]
  2. Bottomley P. A., Edelstein W. A., Foster T. H., Adams W. A. In vivo solvent-suppressed localized hydrogen nuclear magnetic resonance spectroscopy: a window to metabolism? Proc Natl Acad Sci U S A. 1985 Apr;82(7):2148–2152. doi: 10.1073/pnas.82.7.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen S. M. Simultaneous 13C and 31P NMR studies of perfused rat liver. Effects of insulin and glucagon and a 13C NMR assay of free Mg2+. J Biol Chem. 1983 Dec 10;258(23):14294–14308. [PubMed] [Google Scholar]
  4. Luyten P. R., den Hollander J. A. 1H MR spatially resolved spectroscopy of human tissues in situ. Magn Reson Imaging. 1986;4(3):237–239. doi: 10.1016/0730-725x(86)91063-5. [DOI] [PubMed] [Google Scholar]
  5. Siegel N. J., Avison M. J., Reilly H. F., Alger J. R., Shulman R. G. Enhanced recovery of renal ATP with postischemic infusion of ATP-MgCl2 determined by 31P-NMR. Am J Physiol. 1983 Oct;245(4):F530–F534. doi: 10.1152/ajprenal.1983.245.4.F530. [DOI] [PubMed] [Google Scholar]
  6. Silver M. S., Joseph R. I., Chen C. N., Sank V. J., Hoult D. I. Selective population inversion in NMR. Nature. 1984 Aug 23;310(5979):681–683. doi: 10.1038/310681a0. [DOI] [PubMed] [Google Scholar]
  7. Styles P., Scott C. A., Radda G. K. A method for localizing high-resolution NMR spectra from human subjects. Magn Reson Med. 1985 Aug;2(4):402–409. doi: 10.1002/mrm.1910020408. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES