Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Feb;85(4):1096–1100. doi: 10.1073/pnas.85.4.1096

On the role of protein synthesis in the circadian clock of Neurospora crassa.

J C Dunlap 1, J F Feldman 1
PMCID: PMC279712  PMID: 2963337

Abstract

Inhibitors of protein synthesis reset the biological clocks of many organisms. This has been interpreted to mean either that the synthesis per se of proteins is a step in the oscillatory feedback loop or merely that certain unstable protein(s) are required at certain times of the cycle to complete the feedback loop. We report here that Neurospora strains bearing the clock mutation frq-7 are relatively insensitive to the resetting action of the protein-synthesis-inhibitor cycloheximide. Protein synthesis itself in this mutant is inhibited by the drug to the same extent as in wild type. Since the clock of frq-7 continues to run relatively unimpeded even in the virtual absence of protein synthesis, it is unlikely that synthesis per se can be a part of the feedback cycle. Rather, we suggest that for normal operation of the Neurospora clock, certain protein(s) with a high turnover rate are required daily and, thus, must be resynthesized each day (at least) during discrete times in the cycle. The frq-7 mutation simultaneously alters several distinct clock characteristics--period length, temperature compensation, and resetting by cycloheximide. A model is presented to unify these observations.

Full text

PDF
1096

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Bruce V. G., Pittendrigh C. S. TEMPERATURE INDEPENDENCE IN A UNICELLULAR "CLOCK". Proc Natl Acad Sci U S A. 1956 Sep;42(9):676–682. doi: 10.1073/pnas.42.9.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burgoyne R. D. A model for the molecular basis of circadian rhythm involving monovalent ion-mediated translational control. FEBS Lett. 1978 Oct 1;94(1):17–19. doi: 10.1016/0014-5793(78)80896-5. [DOI] [PubMed] [Google Scholar]
  4. Dharmananda S., Feldman J. F. Spatial Distribution of Circadian Clock Phase in Aging Cultures of Neurospora crassa. Plant Physiol. 1979 Jun;63(6):1049–1054. doi: 10.1104/pp.63.6.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ehret C. F., Trucco E. Molecular models for the circadian clock. I. The chronon concept. J Theor Biol. 1967 May;15(2):240–262. doi: 10.1016/0022-5193(67)90206-8. [DOI] [PubMed] [Google Scholar]
  6. Gardner G. F., Feldman J. F. Temperature Compensation of Circadian Period Length in Clock Mutants of Neurospora crassa. Plant Physiol. 1981 Dec;68(6):1244–1248. doi: 10.1104/pp.68.6.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gardner G. F., Feldman J. F. The frq locus in Neurospora crassa: a key element in circadian clock organization. Genetics. 1980 Dec;96(4):877–886. doi: 10.1093/genetics/96.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hastings J. W., Sweeney B. M. ON THE MECHANISM OF TEMPERATURE INDEPENDENCE IN A BIOLOGICAL CLOCK. Proc Natl Acad Sci U S A. 1957 Sep 15;43(9):804–811. doi: 10.1073/pnas.43.9.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacklet J. W. Circadian rhythm from the eye of Aplysia: temperature compensation of the effects of protein synthesis inhibitors. J Exp Biol. 1980 Feb;84:1–15. doi: 10.1242/jeb.84.1.1. [DOI] [PubMed] [Google Scholar]
  10. Jacklet J. W. Neuronal circadian rhythm: phase shifting by a protein synthesis inhibitor. Science. 1977 Oct 7;198(4312):69–71. doi: 10.1126/science.897685. [DOI] [PubMed] [Google Scholar]
  11. KARAKASHIAN M. W., HASTINGS J. W. THE EFFECTS OF INHIBITORS OF MACROMOLECULAR BIOSYNTHESIS UPON THE PERSISTENT RHYTHM OF LUMINESCENCE IN GONYAULAX. J Gen Physiol. 1963 Sep;47:1–12. doi: 10.1085/jgp.47.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karakashian M. W., Schweiger H. G. Evidence for a cycloheximide-sensitive component in the biological clock of Acetabularia. Exp Cell Res. 1976 Mar 15;98(2):303–312. doi: 10.1016/0014-4827(76)90442-0. [DOI] [PubMed] [Google Scholar]
  13. Karakashian M. W., Schweiger H. G. Temperature dependence of cycloheximide-sensitive phase of circadian cycle in Acetabularia mediterranea. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3216–3219. doi: 10.1073/pnas.73.9.3216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loros J. J., Feldman J. F. Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J Biol Rhythms. 1986 Fall;1(3):187–198. doi: 10.1177/074873048600100302. [DOI] [PubMed] [Google Scholar]
  15. Mattern D. L., Forman L. R., Brody S. Circadian rhythms in Neurospora crassa: a mutation affecting temperature compensation. Proc Natl Acad Sci U S A. 1982 Feb;79(3):825–829. doi: 10.1073/pnas.79.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakashima H., Perlman J., Feldman J. F. Cycloheximide-induced phase shifting of circadian clock of Neurospora. Am J Physiol. 1981 Jul;241(1):R31–R35. doi: 10.1152/ajpregu.1981.241.1.R31. [DOI] [PubMed] [Google Scholar]
  17. Nakashima H., Perlman J., Feldman J. F. Genetic evidence that protein synthesis is required for the circadia clock of neurospora. Science. 1981 Apr 17;212(4492):361–362. doi: 10.1126/science.212.4492.361. [DOI] [PubMed] [Google Scholar]
  18. Perlman J., Feldman J. F. Cycloheximide and heat shock induce new polypeptide synthesis in Neurospora crassa. Mol Cell Biol. 1982 Oct;2(10):1167–1173. doi: 10.1128/mcb.2.10.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sargent M. L., Briggs W. R., Woodward D. O. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 1966 Oct;41(8):1343–1349. doi: 10.1104/pp.41.8.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schweiger H. G., Schweiger M. Circadian rhythms in unicellular organisms: an endeavor to explain the molecular mechanism. Int Rev Cytol. 1977;51:315–342. doi: 10.1016/s0074-7696(08)60230-2. [DOI] [PubMed] [Google Scholar]
  21. Walz B., Sweeney B. M. Kinetics of the cycloheximide-induced phase changes in the biological clock in Gonyaulax. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6443–6447. doi: 10.1073/pnas.76.12.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES