Skip to main content
The Journal of Molecular Diagnostics : JMD logoLink to The Journal of Molecular Diagnostics : JMD
. 2010 Jan;12(1):65–73. doi: 10.2353/jmoldx.2010.090074

One Hundred Twenty-One Dystrophin Point Mutations Detected from Stored DNA Samples by Combinatorial Denaturing High-Performance Liquid Chromatography

Annalaura Torella *, Amelia Trimarco *, Francesca Del Vecchio Blanco *, Anna Cuomo *, Stefania Aurino *,, Giulio Piluso *, Carlo Minetti , Luisa Politano §, Vincenzo Nigro *,†,*
PMCID: PMC2797720  PMID: 19959795

Abstract

Duchenne and Becker muscular dystrophies are caused by a large number of different mutations in the dystrophin gene. Outside of the deletion/duplication “hot spots,” small mutations occur at unpredictable positions. These account for about 15 to 20% of cases, with the major group being premature stop codons. When the affected male is deceased, carrier testing for family members and prenatal diagnosis become difficult and expensive. We tailored a cost-effective and reliable strategy to discover point mutations from stored DNA samples in the absence of a muscle biopsy. Samples were amplified in combinatorial pools and tested by denaturing high-performance liquid chromatography analysis. An anomalous elution profile belonging to two different pools univocally addressed the allelic variation to an unambiguous sample. Mutations were then detected by sequencing. We identified 121 mutations of 99 different types. Fifty-six patients show stop codons that represent the 46.3% of all cases. Three non-obvious single amino acid mutations were considered as causative. Our data support combinatorial denaturing high-performance liquid chromatography analysis as a clear-cut strategy for time and cost-effective identification of small mutations when only DNA is available.


Duchenne (DMD [MIM 310200]) and Becker muscular dystrophies (BMD [MIM 300376]) are allelic inherited disorders of muscle. They affect males in >99% of cases, being transmitted as X-linked recessive traits.1 The DMD gene spans 2.2 million bp of genomic DNA on the X chromosome, and the 14-kb transcript encodes a full-length protein (dystrophin) of 427 kd (Dp427m). Both DMD and BMD arise due to mutations at the dystrophin gene locus, which comprises 79 exons and eight tissue-specific promoters. The most common mutations are large intragenic deletions or duplications, encompassing one or more exons, but point mutations are about 15 to 20% of cases, with the major group being premature stop codons.2,3,4,5,6,7,8,9

Patients and their families confer great value to mutation detection for genetic counseling, but also for therapeutic options, since there are claims of novel mutation-targeted treatments.10,11,12 Unfortunately, very often muscle biopsies are not possible because the affected family member is deceased. We have tailored a cost-effective and reliable strategy to discover point mutations from DNA samples. Based on the sensitivity of denaturing high-performance liquid chromatography (DHPLC) to detect mutations, especially in A/T-rich sequences, such as the dystrophin gene,6,7 we developed a combinatorial DHPLC approach to screen pooled samples.

Materials and Methods

Patients

We used archive DNA samples from six different centers: Laboratory of Molecular Biology, Scientific Institute E. Medea, Lecco; Department of Neurological and Psychiatric Sciences, University of Padua; Institute of Neurology, Catholic University, Policlinico Gemelli, Rome; Muscular and Neurodegenerative Disease Unit, Giannina Gaslini Institute, University of Genova; Department of Experimental Medicine, Cardiomyology and Medical Genetics, Second University, Naples; and Centro de Estudos do Genoma Humano, Instituto de Biociências Universidade de São Paulo, Brasil. Diagnosis was determined by clinical features consistent with DMD or BMD, along with an X-linked family history. Informed consent was obtained from patients, when possible, according to the guidelines of Eurobiobank or Telethon.

Archive Samples

One hundred fifty-three DNA archive samples were stored in Tris-EDTA at 4°C. Fifteen were extracted by phenol-chloroform before 1994, whereas 31 were extracted from 1994 to1999, and 46 from 2000 to 2004 (Figure 1). More recent samples (from 2005 to 2007) were extracted using a FlexiGene DNA kit (Qiagen, Hamburg, Germany). Old samples were often recovered as dry pellets. In this case, we rehydrated the pellet. We evaluated the DNA integrity by 0.6% agarose gel electrophoresis. We did not re-precipitate any of the samples. When required, we performed a preamplification step using the GenomiPhi HY DNA amplification kit (GE Healthcare, Chalfont St. Giles, UK), according to the manufacturer's instruction. This kit provides microgram quantities of DNA from nanogram amounts of starting material in only a few hours. The limit of polymerase chain reaction (PCR) product size using this archived DNA was about 1000 bp.

Figure 1.

Figure 1

Extraction dates of DNA samples.

Sample Optimization

Each DNA sample was diluted to a final concentration of 30 ng/μl, and 1 μl was used in each pool. To control for the possibility of unequal PCR product yield, short tandem repeat (STR) polymorphic markers DXS8015-HEX and DXS1204-FAM (Table 1) were amplified from single and pooled DNA templates, in a final reaction volume of 20 μl, by using 0.5 μmol/L each marker primer, buffer LB 10× [200 mmol/L Tris; 100 mmol/L Hepes; 25 mmol/L MgSO4 × 7 H2O; 100 nm KCl; 100 mmol/L (NH4)2 SO4], 0.25 μmol/L each dNTP, 0.5 U AmpliTaq Gold (Applied Biosystems, Foster City, CA).

Table 1.

STR Markers

DXS1204-FAM DXS8015-HEX
F Primer: 5′-ATGAACCCTTAACTCATTTAGCAGG-3′ F Primer: 5′-AGTCTTCTCAGGCCAGAGC-3′
R Primer: 5′-AGCNTGCACCAACATGCC-3′ R Primer: 5′-AGGACCAACTTTCACATGC-3′
Length: 237–251 bp Length: 174–190 bp

F, forward; R, reverse.

Primer Design

Genomic sequence for Dp427m, the main dystrophin isoform found in muscle, was obtained from GenBank (NM 004006.1). Its exon 1 encodes a unique N-terminal MLWWEEVEDCY amino acid sequence and is expressed in the skeletal muscle and heart.

For each dystrophin exon and muscular promoter a primers pair was designed using the Primer 3 software package with the following criteria: product size between 200 and 400 bp, primer size between 24 and 28 nucleotides, and melting temperature between 58°C and 62°C (Table 2).

Table 2.

Primer Design and DHPLC Conditions

Primers
DHPLC
Forward Reverse bp %A Melt(°C)
Pm 5′-GGTAGACAGTGGATACATAACAAATGCATG-3′ 5′-TTCTCCGAAGGTAATTGCCTCCCAGATCTGAGTCC-3′ 531 49% 58.8
2 5′-TTTAATTTGGATGCCCCAAACCAG-3′ 5′-AATGACACTATGAGAGAAATAAAACGG-3′ 347 45% 53
3 5′-GATAATCGTGAAAATGTATCATTGGA-3′ 5′-CAGTTTCTGGTCTGAAATTCTACTAAGTTT-3′ 222 53% 57.6
4 5′-TTGTCGGTCTCCTGCTGGTCAGTG-3′ 5′-CAAAGCCCTCACTCAAACATGAAGC-3′ 194 50% 59.9
5 5′-TTGCAACTAGGCATTTGGTCTCTTACC-3′ 5′-AGATTAATGTTACCCAAAAGGAAACC-3′ 193 50% 55.3
6 5′-TCTATTTATCACTGAAGATCAAGGAC-3′ 5′-TGGGGAAAAATATGTCATCAGAGTC-3′ 344 50% 57.9
7 5′-ACACTCAAGACTTAAGGACTATGGGC-3′ 5′-TACCATACTAAAAGCAGTGGTAGTCCAG-3′ 287 53% 59.5
8 5′-ATATAGAAACCAAAAATTGATGTGTAG-3′ 5′-ATGCATATAAAACAGAAAACATCTTG-3′ 280 49% 57.3
9 5′-TTCTACCATGTTGGAAAGTAGTCCT-3′ 5′-AAGCAGTGTTAGATTATCTTGGAAGC-3′ 283 50% 59.9
10 5′-TTGTGCAGCATTGGAAGCTCCTGA-3′ 5′-TAGTTTACCTCATGAGTATGAAACTGGTC-3′ 205 52% 58.8
11 5′-ACCACACCGATTTACCTAGAG-3′ 5′-CACAAGCTTCCAAAACTTGTT-3′ 292 49% 57.4
12 5′-GATAGTGGGCTTTACTTACATCCTTC-3′ 5′-GAAAGCACGCAACATAAGATACACCT-3′ 332 48% 56.9
13 5′-GCAGAAATAAATTTCACCATTTGAGAGC-3′ 5′-ACTTCAGCTGATTATGAGTGTGTG-3′ 362 48% 54.2
14 5′-GATACTTTGGCAAATTATTCATGCC-3′ 5′-CGTGTCTTTTACAGCTAGTTTCTCAC-3′ 227 51% 58.4
15 5′-GTGAGAAACTAGCTGTAAAAGACACG-3′ 5′-TGGGTTTTTATAAGACCATTGAAAGC-3′ 244 50% 56.1
16 5′-CTATAGTGGTGTATGGAATGCAACC-3′ 5′-TGAGATAGTCTGTAGCATGATAATTGG-3′ 276 48% 57.3
17 5′-GTCTGACCTCTGTTTCAATACTTCTCAC-3′ 5′-AAGCTTGAGATGCTCTCACCTTTTCC-3′ 225 50% 58.3
18 5′-GTGTCAGGCAGGAGTCTCAGATTGAGA-3′ 5′-GCACGGAGTTTACAAGCAGCACAAAATGAG-3′ 301 50% 56.4
19 5′-TGAATTACTCATCTTTGCTCTCATGCTG-3′ 5′-CCCTAAGAAGATTATCTAAATCAACTCGTG-3′ 156 56% 60.1
20 5′-GCTTTCAGATCATTTCTTTCAGTCTG-3′ 5′-CCAAGAAATACCTATTGATTATGCTC-3′ 360 50% 59.5
21 5′-CTTGCCTTACTGCTTTTTAATACCTTC-3′ 5′-TTATTGTTTCATGTTAGTACCTTCTGG-3′ 360 47% 57.3
22 5′-GAGTTTGCTGACAATTTAGGAAAACATGGC-3′ 5′-GATAAGCGTGCTTTATTGTTTTGAC-3′ 270 52% 60.1
23 5′-GTTTGAATCATATAGATTTCAAGTACAG-3′ 5′-AACAAGTAAATAAAAATGAGGGTAG-3′ 357 50% 57.6
24 5′-ACCAGTAATGCCTTATAACGGGTCTCG-3′ 5′-ATCCACCCCAGCTGTAAAACACTGATC-3′ 233 52% 57.4
25 5′-ATCCAATATGCAATGCCATCAGTTCCC-3′ 5′-CTTAGTTAAGTACGTTGAGGCAAGC-3′ 315 50% 58.1
26a 5′-GTCTATGCCAGAAAGGAGGCCTTGA-3′ 5′-ACCAGGAAAGAGCAGACTGTATACGAC-3′ 274 51% 56.2
26b 5′-TCTAAGCTTTCTGTTATTTACATACTGATG-3′ 5′-TTCAACTGCTTTCTGTAATTCATCTGGAG-3′ 258 51% 56.4
27 5′-CTCATTCTAACTGGATGTTGTGAGAAAG-3′ 5′-CACTATGCCTCACATATGACCATG-3′ 355 50% 58.6
28 5′-CTGTCTGCTGCATTTTGAATTACCTGC-3′ 5′-TTCTATTTGGTACTTGACCTCTTTTA-3′ 356 50% 55.8
29 5′-TCAGAAGATACTGAGCATTTGCTGATAATCC-3′ 5′-CTGAGAGCTGTATCTGCTATACATTAATGC-3′ 300 51% 58.4
30 5′-CAGGATTACAGAAAAGCTATCAAGAGT-3′ 5′-AAGAATGGAAGCTGATTCCCAGATGTAC-3′ 259 51% 59.6
31 5′-GTTGTTCTTTGTAGAGCATGCTGACT-3′ 5′-TGCCCAACGAAAACACGTTCCTTAG-3′ 203 50% 56.3
32 5′-GACCAGTTATTGTTTGAAAGGCAAA-3′ 5′-GTACCTGCGTATTTGCCACCAGAAAT-3′ 265 49% 58.2
33 5′-CAAACATGGAATAGCAATTAAGGGGATCTC-3′ 5′-GAAGTGTTTGTGGTCTCAGCATGC-3′ 293 50% 57
34 5′-ACAGAAATATAAAAGTTCCAAATAAGT-3′ 5′-ACGTATGTTCAAAATAACCTTCAGTG-3′ 299 49% 55
35 5′-ACAAGACATTACTTGAAGGTCAATGC-3′ 5′-AAGCTTCTAGCCTTTTCTCTTACC-3′ 243 50% 58.3
36 5′-CCAATAATGCCATGGTATGTCTCTG-3′ 5′-GGACAAAGATGATTGAAGTAACTGGTG-3′ 229 52% 57.7
37 5′-CTTCAAGTCCTATCTCTTGCTCATGG-3′ 5′-CACAAGTTTCCACCTTGGAGTAGATC-3′ 237 52% 60.6
38 5′-GCATGTGATTAGTTTAGCAACAGGAGG-3′ 5′-CAGTTGGAGACTTATCTAAGTTCTTTCC-3′ 311 50% 55.7
39 5′-TGAAGACTGTACTTGTTGTTTTTGATCAG-3′ 5′-GTTTCTGATGACTAAGAGTCTGAAGCAG-3′ 276 51% 56.3
40 5′-ATAACTGCAGCCAGAAGTGCACTATAC-3′ 5′-GTATAATAAAATCTGGTATTGACATTC-3′ 261 50% 56.2
41 5′-ATGTGGTTAGCTAACTGCCCTGGGC-3′ 5′-CATACGTGGGTTTGCCAGTAACAACTC-3′ 260 54% 63.2
42 5′-GGAGGAGGTTTCACTGTTAGGAAGC-3′ 5′-ATGATCACCTTGTAAAATACGAATG-3′ 297 47% 56.4
43 5′-GCAACACCATTTGCTACCTTTGGGA-3′ 5′-CCTGAAAACAAATCATTTCTGCAAG-3′ 331 48% 54.8
44 5′-CTTGATCCATATGCTTTTACCTGCA-3′ 5′-TCCATCACCCTTCAGAACCTGATCT-3′ 268 48% 56
45 5′-AGTACAACTGCATGTGGTAGCACACTG-3′ 5′-CATTCCTATTAGATCTGTCGCCCTAC-3′ 296 48% 58.2
46 5′-ATTGCCATGTTTGTGTCCCAGTTTGC-3′ 5′-TAACCTAATGGGCAGAAAACCAATG-3′ 336 47% 55
47 5′-AAAGACAAGGTAGTTGGAATTGTGCTG-3′ 5′-TTAACACATGTGACGGAAGAGATGG-3′ 252 49% 57.9
48 5′-GCTTATGCCTTGAGAATTATTTACCT-3′ 5′-TCCTGAATAAAGTCTTCCTTACCACACT-3′ 372 48% 55.6
49 5′-TTGCTAACTGTGAAGTTAATCTGCAC-3′ 5′-TGATTATAAATAGTCCACGTCAATGG-3′ 243 49% 57.4
50 5′-CACCAAATGGATTAAGATGTTCATGAAT-3′ 5′-TCTCTCTCACCCAGTCATCACTTCATAG-3′ 271 51% 59.3
51 5′-GAAATTGGCTCTTTAGCTTGTGTTTC-3′ 5′-GGAGAGTAAAGTGATTGGTGGAAAATC-3′ 388 49% 58.8
52 5′-GTAAAAGGAATACACAACGCTGAAG-3′ 5′-AAATGTGAGGGGGATATATGAACTTAAG-3′ 265 50% 58.3
53 5′-TTTAAAATGTCTCCTCCAGACTAGC-3′ 5′-GTCTACTGTTCATTTCAGCTTTAACGTG-3′ 410 47% 54.3
54 5′-GACCTGAGGATTCAGAAGCTGTTTACGA-3′ 5′-CACCACCCCATTATTACAGCCAACAG-3′ 312 49% 57.2
55 5′-TGAGTTCACTAGGTGCACCATTCTGA-3′ 5′-CACAAGAGTGCTAAAGCGGAAATGCC-3′ 288 48% 59.3
56 5′-GCACATATTCTTCTTCCTGCTGTCCTG-3′ 5′-GTGGCCTTTTTGCTCCACATCTTTTCC-3′ 233 49% 58.2
57 5′-ACTTCTAGATATTCTGACATGGATCGC-3′ 5′-TGTGCTTAACATGTGCAAGGCACGAG-3′ 243 49% 60
58 5′-GAATGCCACAAGCCTTTCTTAGCACTTC-3′ 5′-TGCTCCGTCACCACTGATCCTTCTATC-3′ 225 50% 57.4
59 5′-ATGTGGCCTAAAACCTTGTCATATTGCC-3′ 5′-TTGTGGGAAGATAACACTGCACTCAAG-3′ 392 47% 60.9
60 5′-CCTAAAGAGAATAAGCCCAGGTATC-3′ 5′-TCCTATCCTCACAAATATTACCATGA-3′ 353 49% 57.4
61 5′-GAGAACATAATTTCTCTCCTTTTCCTCCC-3′ 5′-CAAGATGCAATAAAGTTAAGTGATAAAAGC-3′ 154 55% 58
62 5′-TGGAGATTAATGTTGTCTTTCCTGTTTGCGA-3′ 5′-TACTCACTTGTGAATATACAGGTTAGTCAC-3′ 207 52% 57.1
63 5′-TCCTGTTTTCTTGACTACTCATGGTAAATGC-3′ 5′-TAACTTGGAGGAAACATGGCCATGTCC-3′ 154 53% 56.6
64 5′-TATTTCTGATGGAATAACAAATGCTC-3′ 5′-TAGTATCAAGATCTTCAAATACTGGCCAATAC-3′ 157 53% 56.9
65 5′-GAGTCCTAGCTAGGATTCTCAGAGG-3′ 5′-CTAAGCCTCCTGTGACAGAGCCC-3′ 341 49% 59.7
66 5′-AGAAGTGTTTACCCTCTAGGAAAGGGTC-3′ 5′-TCCCATCTAGAACTAGGGTAATTAGCCAAC-3′ 216 51% 56.4
67 5′-CCACTACTGTGGAAATACTGGCTACTC-3′ 5′-CCTACTGCCTACTGAAGAGCTAATATGAG-3′ 391 48% 59.6
68 5′-GATATACACCTCCTTTGCCATCTTGCC-3′ 5′-AACTAACAGCAACTGGCACAGGAGA-3′ 342 53% 62.5
69 5′-TGGTAGAAGGTTTATTAAAGAGTGTTCTTTGGG-3′ 5′-TGAACTAACTCTCACGTCAGGCTGGCGTC-3′ 230 51% 58
70 5′-CATCCTGTCCTAAATCTGATCTCACC-3′ 5′-TGGGAGTGAAAGGAGGGTGTTCAGCT-3′ 262 50% 59.8
71 5′-TGCGTGTGTCTCCTTCACCACCTCA-3′ 5′-GCGAGCGAATGTGTTGGTGGTAGCAGCACCC-3′ 131 54% 58.2
72 5′-CATAACTGTGTGGTGGGTTTTTTCTCCA-3′ 5′-TATTTGCCTGGCATACAACTAGCCTCA-3′ 168 54% 59.6
73 5′-TTTCAGGAATGTTCGATTAGGTCTTGAA-3′ 5′-TCCTGTGCTATCCTACCTCTAAATCCCTC-3′ 226 50% 56.4
74 5′-CTGAGTCCCTAACCCCCAAAGCA-3′ 5′-GTGCAAGTGTATGCACTCTGCATACC-3′ 280 50% 59
75 5′-CCATGGTATATAAAATTTGGTGATGA-3′ 5′-GCACCTATAAAAAGTGCTCTCTGAGG-3′ 429 50% 60.8
76 5′-TAATTCTGTTTTCTTTTGGATGACTTAGCC-3′ 5′-GGCCAAATATTCATGTCCCTGTAATACG-3′ 230 54% 61.9
77 5′-GCTTGAGGGTTTTCTTTGTTATTTATGAGCAAG-3′ 5′-TGATCCCAGCAAATCTGAGTCCCAC-3′ 269 50% 55
78 5′-TCCCTTTCTGATATCTCTGCCTCTTCC-3′ 5′-AGCAGGATGAGACAGACAGAAGCCAT-3′ 127 55% 56.5
79 5′-AACAGAGTGATGCTATCTATCTGCACC-3′ 5′-TCTGCTCCTTCTTCATCTGTCATGACTG-3′ 159 54% 58

%A indicates the starting concentration of buffer A (without acetonitrile) used to load samples. Melt(°C) indicates the preferred temperature of analysis.

Primer pairs were chosen to include flanking-intron sequence. Primer sequences were checked by BLASTn to avoid matching with repeated human sequences or covering single nucleotide polymorphisms in the vicinity of exon sequences. Only in the case of exon 26, we designed two primer pairs that split it into two overlapping fragments. Following these requirements, we created a series of amplicons, all with the same melting characteristics. All were amplified using the same PCR conditions. Primers were synthesized by MWG Biotech AG, Ebersberg, Germany. All PCR share the same conditions (95°C 30 seconds, 60°C 90 seconds, 68°C 90 seconds for 33 cycles).

Amplification of Genomic DNA

PCR reactions were set up semiautomatically using an automatic liquid handling Eppendorf epMotion and 384/96-well plates. DNA was amplified in a final reaction volume of 18 μl by using 30 ng of genomic DNA for each pool, buffer LB [20 mmol/L Tris; 10 mmol/L Hepes; 2.5 mmol/L MgSO4 × 7 H2O; 10 nm KCl; 10 mmol/L (NH4)2 SO4], 1.5 mmol/L MgCl2, 0.25 μmol/L each dNTP, 0.5 μmol/L each primers, 0.5 U AmpliTaq Gold (Applied Biosystems).

WAVE System DHPLC Analysis

The dystrophin exons and flanking intronic sequences and the muscular promoter were analyzed using high-throughput denaturing high-performance liquid chromatography (HT-DHPLC). PCR products were directly analyzed. Using pooled samples a preliminary annealing step is not required. The system is based on DHPLC. The WAVE DHPLC system is an ion-pair, reverse-phase HPLC method optimized to separate heteroduplex from homoduplex DNA fragments (Transgenomic Inc., Omaha, NE).

Sequence Analysis

PCR amplicons were purified using the EXOSAP purification kit (GE Healthcare, Chalfont St. Giles, UK): 2 μl of ExoSAP-IT was directly added to 5 μl of PCR product and incubated at 37°C for 15 minutes. ExoSAP-IT was inactivated by heating at 80°C for 15 minutes. The sequence reactions were purified by Applied Biosystems BigDye XTerminator purification kit to remove unincorporated dye and other contaminants. Samples were analyzed using an ABI3130xL and sequencing analysis software (Applied Biosystems).

Results

We screened 153 DNA samples from unrelated DMD or BMD patients. These samples were extracted and studied many years ago without obtaining a genetic diagnosis (Figure 1). We preliminarily excluded deletions or duplications by MLPA and Log-PCR.3,4

Combinatorial Pools

To speed up the analysis and improve sensitivity, we pooled DNA samples in 17 units, each comprising samples from nine male patients. For each unit, we assembled six pools, each one containing DNA from three different patients, so that each DNA sample was present in two different pools and thus analyzed in duplicate (Table 3). This enabled the parallel amplification of three DNA samples in one run and allowed us to detect point mutations without the annealing with control DNA. To avoid pooling samples with significantly different PCR yield, we preliminarily genotyped STR markers in each of the DNA samples with the ABI-Prism 3130 xl using Gene Mapper software. We used two different X markers (DXS8015 and DXS1204) for the amplification of separate samples to determine tandem repeat lengths. On the basis of STR analyses, we created the pools by mixing three DNA samples with a different number of repeats (Figure 2).

Table 3.

Combinatorial Pools

Pool 1 Pool 2 Pool 3
1 4 7
2 5 8
3 6 9
Pool 4 Pool 5 Pool 6

1 2 3
4 5 6
7 8 9

Samples were divided into groups of nine. For each group we created six overlapping pools, each one containing three DNA samples from three different patients, so that each sample was present in a unique combination of two different pools.

Figure 2.

Figure 2

Quality control of PCR yield. A–C: Analysis of each individual sample using the STR DXS8015. D: Analysis of a pool containing three samples.

We analyzed the DMD exons, flanking intronic sequences and the muscle-promoter using HT-DHPLC. Each pool was amplified for all of the 79 dystrophin gene exons and promoter. PCR products were directly analyzed by WAVE system using predetermined temperature and elution buffers concentrations (Table 2). The WAVE system provides rapid, automated scanning for single nucleotide polymorphisms, even when the nature and location of the mutations are unknown.

DHPLC analysis of the pools allowed the unambiguous identification of the mutant sample, avoiding the subsequent screening of three single DNA samples. The presence of a variation within a fragment appears as altered chromatogram shapes of the two different pools sharing the same DNA. This type of scanning unequivocally points out the patient and the fragment for sequence analysis (Figure 3). This approach reduced the turnaround time and was more cost-effective.

Figure 3.

Figure 3

Examples of aberrant DHPLC profiles. The figure shows different DHPLC profiles with growing complexity from A to D. A: Exon 6 showed a heteroduplex in both pools 1 and 4 sharing the DNA sample TU19, in which a frameshift mutation (c.401 404 delCCAA) was detected. B: Exon 27 heteroduplexes in both pools 2 and 6 sharing the DNA sample TU124, in which a splicing mutation (c.3433-1 A>G) was detected. C: Exon 29 heteroduplexes in pools 1, 4, and 5. Pools 1 and 4 shared the DNA sample TU181, pools 1 and 5 shared the DNA sample TU188. The same nonsense mutation (c.3940 C>T) was detected in both samples. D: Three different exon 14 heteroduplexes in pools 2 and 6 and 1 and 4, corresponding to combination of a mutation (**) and a known polymorphism (*). Arrow indicates homoduplexes.

Sequence Analysis

From 153 samples tested, we identified 121 causative mutations of 99 different types. We detected stop codons in the relative majority of patients (56/121 = 46.3%, Table 4), while we found frameshift mutations in 42 cases (34.7%, Table 5), splice mutations in 20 (16.5%, Table 6), and missense mutation in three patients (2.5%, Table 7). In addition, we detected 36 variations classified as polymorphisms or private variants (Table 8).

Table 4.

Nonsense Mutations

Sample Exon DNA change Stop Protein New Disease
3761 6 c.409 G>T TAA E137X Yes DMD
TU182-TU294-TU183-TU378 6 c.433 C>T TGA R145X No DMD
TU139-3443 7 c.583 C>T TGA R195X No DMD
TU184 10 c.1062 G>A TGA W354X No DMD
TU86 10 c.1093 C>T TAA Q365X No DMD
TU180 11 c.1292 G>A TGA W431X No DMD
TU318 14 c.1652 G>A TGA W551X Yes DMD
TU187-TU189 17 c.2125 C>T TAA Q709X No DMD
TU05 19 c.2302 C>T TGA R768X No DMD
G11 19 c.2380 G>T TAG E794X Yes DMD
TU70 20 c.2414 C>G TGA S805X Yes DMD
F1 20 c.2521 C>T TAA Q841X No DMD
TU01 23 c.2956 C>T TAA Q986X No DMD
TU107 23 c.3151 C>T TGA R1051X No DMD
TU51-TU185 24 c.3259 C>T TAG Q1087X No DMD
TU32 25 c.3409 C>T TAG Q1137X No DMD
TU12 26a c.3580 C>T TAG Q1194X No DMD
475 27 c.3625 C>T TAA Q1209X Yes DMD
TU342 28 c.3843 G>A TGA W1281X Yes BMD
TU181-TU188-TU102 29 c.3940 C>T TGA R1314X No BMD
TU218 30 c.4117 C>T TAG Q1373X No DMD
R46 33 c.4600 C>T TAG Q1534X No DMD
TU24 34 c.4690 C>T TAA Q1564X Yes DMD
TU271 35 c.4979 G>A TGA W1660X Yes BMD
TU190 35 c.4996 C>T TGA R1666X No DMD
TU63 37 c.5209 C>T TAA Q1737X Yes DMD
TU266 39 c.5476 G>T TAA E1826X No DMD Carrier
TU194 39 c.5530 C>T TGA R1844X No DMD
TU60 41 c.5773 G>T TAG E1925X No DMD
TU112-TU178-TU84 41 c.5899 C>T TGA R1967X No DMD
TU159 42 c.6023 C>A TGA S2008X Yes DMD
G2-G8-R42 46 c.6678 G>A TGA W2226X Yes DMD
TU186 48 c.7006 C>T TAG Q2336X No DMD
R88 57 c.8422 A>T TAG K2808X Yes DMD
TU152 59 c.8713 C>T TGA R2905X No DMD
3448 59 c.8880 G>A TGA W2960X Yes DMD
TU02-TU157 60 c.8944 C>T TGA R2982X No DMD
TU87 65 c.9461 T>A TAG L3154X No BMD
TU18 68 c.9829 G>T TAA E3277X Yes BMD/DMD
TU208-G13 70 c.10108 C>T TGA R3370X No DMD
F4 70 c.10135 A>T TAA K3379X No DMD
G3 70 c.10171 C>T TGA R3391X No DMD

Resulting TGA stop codons are indicated in bold.

Table 5.

Frameshift Mutations

Sample Exon DNA change Protein New Disease
TU326 5 c.321 delT G109V fs X1 Yes carrier
TU19 6 c.401_404 delCCAA N135V fs X5 Yes DMD
3451-3453 7 c.593_594 insA H198Q fs X19 Yes DMD
TU65 8 c.713_714 delTT L239A fs X7 Yes DMD
TU55 11 c.1188 insT G397W fs X1 Yes DMD
TU150 11 c.1181del G G394A fs X12 Yes DMD
TU16 11 c.1300_1310 delCTCAGGGTAGC L434X Yes DMD
TU07 12 c.1482 delG K494K fs 7 Yes DMD
TU03 14 c.delGTA 1603insCT V535L fs X47 Yes DMD
TU386 16 c.1859 delT L620R fs X12 Yes DMD
TU23 22 c.2880 2884 delCAAAC K961L fs X5 Yes DMD
TU267 22 c.2887 del T S963P fs X40 Yes DMD
TU137 25 c.3285 3288 delCAGT S1096_D1097I fs X9 Yes DMD
TU115 25 c.3420 del C H1140Q fs X13 Yes DMD
TU27 26 c.3447 delGGlnsTT K1149N-E1150X No DMD
TU177 26 c.3464 3471 del GTTGGAG G1155E fs X20 No DMD
TU44 30 c.4100 delA Q1367R fs X15 Yes DMD
TU103 30 c.4119 delG E1374R fs X8 Yes DMD
G7 30 c.4186 insA Y1396X fs Yes DMD
TU29-G10 33 c.4565delT (Stop TAA) V1522G fs X2 No DMD
TU08-R49 35 c.4871_4872 delAG K1625G fs X27 Yes DMD
TU13 36 c.5091 delG A1698L fs X22 Yes DMD
R44 37 c.5272_5280 del TCAGAGCTC ins CCAA S1758P fs X13 Yes DMD
TU304 40 c.5606 del G R1869K fs X4 Yes DMD
TU06 40 c.5697 dup A L1900I fs X5 No DMD
3488 42 c.5973_5974 ins A E1992R fs X11 Yes DMD
TU211 44 c.6353 delA Q2118R fs X3 Yes DMD
TU04 48 c.6980del A K2329S fs X8 No DMD
TU57 55 c.8081 del G F2694S fs X31 Yes DMD
R37 56 c.8284 ins A I2762N fs X 10 Yes DMD
TU33 58 c.8597 8598deiTT L2866R fs X28 Yes DMD
TU62 59 c.8732 insA N2912Q fs X2 No DMD
TU151 62 c.9204_9207 del CAAA N3068K fs X20 No DMD
TU179-G1 65 c.9429_9430 del GC Q3143H fs X9 Yes DMD
TU192-TU193 68 c.9926_9929 ins AAGC H3309Q fs X7 Yes BMD/DMD
G12 70 c.10105 del G V3369F fs X8 Yes DMD
TU214 73 c.10386 del T N3462K fs X3 Yes BMD/DMD

Table 6.

Putative Splicing Defects

Sample Position DNA change Splice site New Disease
TU22-TU77 Intron 2 c.94−1 G>A Acceptor No BMD
TU34 Intron 5 c.358−2 A>G Acceptor No DMD
TU296 Intron 5 c.358−2 A>T Acceptor No DMD
TU219 Intron 6 c.530+1 G>A Donor Yes DMD/BMD
TU309 Intron 11 c.1331+2 T>C Donor Yes DMD/BMD
2082 Intron 11 c.1332−9 A>G Acceptor No DMD
TU124 Intron 26 c.3433−1 G>A Acceptor No DMD
TU164 Exon 26 c.3603 G>A Donor Yes DMD
TU105 Intron 35 c.5026−6 A>G Acceptor No DMD
TU332 Intron 48 c.7098+1 G>A Donor No DMD
TU379 Exon 58 c.8668 G>A Donor No DMD
TU114 Intron 58 c.8668+1 G>A Donor Yes DMD
TU209 Intron 58 c.8668+3 A>T Donor Yes DMD/BMD
TU133 Exon 65 c.9560 A>G Donor No DMD
TU54-1707 Intron 65 c.9563+1 G>A Donor No DMD
TU36-TU97 Intron 70 c.10223+1 G>A Donor No DMD
TU30 Intron 70 c.10223+5 G>T Donor Yes DMD

Table 7.

Functional Mutations

Sample Exon DNA change Protein New Disease
TU118 3 c.160_162 del CTC L54del Yes DMD
TU42 69 c.10010 G>A C3337Y Yes DMD
TU109 70 c.10101_10103 delAGA E3367del No BMD/DMD

Table 8.

Variants and Polymorphisms

Variations Position New Number*
c.32-78 G>T Intron 1 No 1
94-16 ins T Intron 2 Yes 5
c.832-54 A>G Intron 8 No 1
c.837 G>A T279T Exon 9 No 2
c.853 G>A G285R Exon 9 Yes 1
1225 A>T T409S Exon 11 Yes 1
c.1603-57 T>C Intron 14 No 2
1635 A>G R545R Exon 14 No 7
1869 C>T L623L Exon 16 No 1
c.2176 G>T V726F Exon 18 Yes 1
c.2391 T>G N797K Exon 20 No 1
c.3604-95 delG Intron 26 Yes 2
c.3936 G>C L1312F Exon 29 Yes 1
4234-13A>G Intron 30 Yes 2
c.4510 H1504Y Exon 32 Yes 1
c.4675-53 G>T Intron 33 No 1
c.4878 G>T V1626V; 5016 T>A N1672K Exon 35 Yes 2
c.5326-54 A>C Intron 37 No 1
5234 G>A R1745H Exon 37 No 7
5586+93insCT Intron 39 Yes 1
c.5723 A>T D1908V GAT->GTT Exon 40 No 1
c.5795 A>G Q1932R Exon 41 Yes 1
c.6118-76 ins TA Intron 42 Yes 2
6290+27 T>A Intron 43 No 2
c.6443 T>C L2148P CTC->CCC Exon 45 No 1
6913-114A>T Intron 47 No 4
6913-114A>T Intron 47 No 1
c.3561 A>T 6913-114 Intron 47 Yes 1
c.7200+53 C>G Intron 49 No 2
8027+11 C>T Intron 54 No 6
c.8571 T>C T2857T Exon 58 Yes 1
c.8810 A>G Q2937R Exon 59 No 1
c.9085-23 C>A Intron 60 Yes 1
9649+15 T>C Intron 66 No 5
c.10789 L3597L; 10554-30_10554-35 del TTTC Exon 75/intron 74 Yes 1
c.3685*49 c>t Intron 79 Yes 1
*

Number of samples with the same variation.

Discussion

Identification of a pathogenic point mutation in a DMD or BMD patient confirms the clinical diagnosis and allows definitive carrier testing and prenatal diagnosis for family members.8,9 Precise knowledge of the mutation is also required for some of the emerging therapies, such as exon skipping,10 or suppression of premature stop codons.11,12

We found mutations in 121 DMD-BMD patients out of 153 DNA samples tested (Figure 4). In 32 DNA samples (20.9%), no mutation was found. Complete sequence analysis of all exons in these samples confirmed the DHPLC negative results. Considering that 153 DNA samples correspond to 20% of all patients that show no deletions or duplications, about 20% of 20% of patients cannot be diagnosed by DNA analysis alone. This indicates that mRNA13 or CGH array13,14 analyses can be necessary to diagnose about 4% of all DMD/BMD patients.

Figure 4.

Figure 4

Distribution of all causative point mutations along the dystrophin cDNA. Segments corresponding to groups of 10 exons are indicated in dark and light gray.

Notably, 22 unrelated patients shared the same mutations (Tables 456). Among the 56 nonsense mutations, 34 (60.7%) show the TGA termination codon that is considered optimal for readthrough therapy.11 Notably, among the 37 different frameshift mutations, 31 (83.8%) are absent from the Leiden database.2

We identified three putative functional mutations (Table 7). One is the substitution of a highly conserved cysteine at position 3337 within the second half of the dystroglycan-binding domain. A similar mutation (C3340Y) has been associated with Duchenne muscular dystrophy.15 There is the loss of aspartic acid in position 3368 with the substitution of the glutamic acid in position 3367 with aspartic acid. This produces the loss of glutamic acid in position 3367 that is known to be associated with a particular DMD phenotype.16

The first half of the C terminus and the cysteine-rich (D-domain; amino acid residues 3080–3408) are highly conserved regions of dystrophin. The region is involved in interactions with dystroglycan that mediates attachment of dystrophin to the cytoplasmic surface of the cell membrane. Deletions or chain-terminating nonsense mutations involving the D-domain usually result in DMD.

The third is the c.160_162 CTC deletion in exon 3 in DMD, which resulted in the loss of an evolutionary conserved leucine in position 54 in the actin-binding domain. This is the same amino acid position replaced by an arginine described in a boy with Duchenne muscular dystrophy.17 Interestingly, this missense mutation in position 54 was questioned because it was not completely studied by DNA sequencing. After 16 years, our findings support the causative role of the change.

Two unusual mutations were also identified. Premature stop codons in positions 1281 and 1314 associated with BMD and not DMD. This could be explained by the skipping of exon 28 or 29, respectively.18

Our DNA-based mutation screening strategy is suitable for high-throughput applications in patients for which mRNA is unavailable. Sample pooling, together with identical PCR conditions for all fragments, were set up for the simultaneous detection of any mutations type within exons and exon flanking regions. The preliminary analysis of single and pooled samples by STR markers permitted us to confirm the same PCR efficiency in all combinatorial pools. In the protocol, the pooling was conservative, since we only mixed three samples. With the availability of more sensitive methods of DNA detection (ie, multicolor fluorescence) we can foresee possibilities to pool dozens of samples with further impressive reduction of costs.

Acknowledgements

We thank Marina Fanin, Giuliana Galluzzi, Enzo Ricci, Federico Zara, Claudio Bruno, Sara Scapolan, Maria Teresa Bassi, and Mayana Zatz for DNA samples and Alessandra Ferlini for helpful discussion. We acknowledge the SUN-Naples Human Mutation Gene Bank (Cardiomyology and Medical Genetics), which is partner of the Eurobiobank Network.

Footnotes

Supported by grants from Telethon-UILDMGUP04008 (2005–2007) and TIGEM-11B and TIGEM-C20B, Ministero dell'Istruzione dell'Università e della Ricerca (MIUR: PRIN 2004 and 2006) (to V.N. and C.M.), Ministero della Salute (d.lgs 502/92), Ricerca d'Ateneo (to V.N. and L.P.).

A.T. is a fellow of the Luigi Califano Foundation.

References

  • 1.Emery AE. The muscular dystrophies. Lancet. 2002;359:687–695. doi: 10.1016/S0140-6736(02)07815-7. [DOI] [PubMed] [Google Scholar]
  • 2.Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ, Den Dunnen JT. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve. 2006;34:135–144. doi: 10.1002/mus.20586. [DOI] [PubMed] [Google Scholar]
  • 3.Schwartz M, Duno M. Improved molecular diagnosis of dystrophin gene mutations using the multiplex ligation-dependent probe amplification method. Genet Test. 2004;8:361–367. doi: 10.1089/gte.2004.8.361. [DOI] [PubMed] [Google Scholar]
  • 4.Trimarco A, Torella A, Piluso G, Maria Ventriglia V, Politano L, Nigro V. Log-PCR: a new tool for immediate and cost-effective diagnosis of up to 85% of dystrophin gene mutations. Clin Chem. 2008;54:973–981. doi: 10.1373/clinchem.2007.097881. [DOI] [PubMed] [Google Scholar]
  • 5.Deburgrave N, Daoud F, Llense S, Barbot JC, Récan D, Peccate C, Burghes AH, Béroud C, Garcia L, Kaplan JC, Chelly J, Leturcq F. Protein- and mRNA-based phenotype-genotype correlations in DMD/BMD with point mutations and molecular basis for BMD with nonsense and frameshift mutations in the DMD gene. Hum Mutat. 2007;28:183–195. doi: 10.1002/humu.20422. [DOI] [PubMed] [Google Scholar]
  • 6.Belsito A, Politano L, Piluso G, Comi LI, Nigro V. Dystrophin gene scanning by DHPLC of DMD carriers without deletions or duplications. Acta Myol. 1999;3:221–223. [Google Scholar]
  • 7.Bennett RR, den Dunnen J, O'Brien KF, Darras BT, Kunkel LM. Detection of mutations in the dystrophin gene via automated DHPLC screening and direct sequencing. BMC Genet. 2001;2:17. doi: 10.1186/1471-2156-2-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Nigro V, Politano L, Nigro G, Romano SC, Molinari AM, Puca GA. Detection of a nonsense mutation in the dystrophin gene by multiple SSCP. Hum Mol Genet. 1992;1:517–520. doi: 10.1093/hmg/1.7.517. [DOI] [PubMed] [Google Scholar]
  • 9.Flanigan KM, von Niederhausern A, Dunn DM, Alder J, Mendell JR, Weiss RB. Rapid direct sequence analysis of the dystrophin gene. Am J Hum Genet. 2003;72:931–939. doi: 10.1086/374176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, de Kimpe SJ, Ekhart PF, Venneker EH, Platenburg GJ, Verschuuren JJ, van Ommen GJ. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357:2677–2686. doi: 10.1056/NEJMoa073108. [DOI] [PubMed] [Google Scholar]
  • 11.Aurino S, Nigro V. Readthrough strategies for stop codons in Duchenne muscular dystrophy. Acta Myol. 2006;25:5–12. [PubMed] [Google Scholar]
  • 12.Wilton S. PTC124, nonsense mutations and Duchenne muscular dystrophy. Neuromuscul Disord. 2007;17:719–720. doi: 10.1016/j.nmd.2007.07.001. [DOI] [PubMed] [Google Scholar]
  • 13.Bovolenta M, Neri M, Fini S, Fabris M, Trabanelli C, Venturoli A, Martoni E, Bassi E, Spitali P, Brioschi S, Falzarano MS, Rimessi P, Ciccone R, Ashton E, McCauley J, Yau S, Abbs S, Muntoni F, Merlini L, Gualandi F, Ferlini A. A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies. BMC Genomics. 2008;9:572. doi: 10.1186/1471-2164-9-572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.del Gaudio D, Yang Y, Boggs BA, Schmitt ES, Lee JA, Sahoo T, Pham HT, Wiszniewska J, Chinault AC, Beaudet AL, Eng CM. A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies. Hum Mutat. 2008;9:1100–1107. [Google Scholar]
  • 15.Lenk U, Oexle K, Voit T, Ancker U, Hellner KA, Speer A, Hübner C. A cysteine 3340 substitution in the dystroglycan-binding domain of dystrophin associated with Duchenne muscular dystrophy, mental retardation and absence of the ERG b-wave. Hum Mol Gen. 1996;5:973–975. doi: 10.1093/hmg/5.7.973. [DOI] [PubMed] [Google Scholar]
  • 16.Becker K, Robb SA, Hatton Z, Yau SC, Abbs S, Roberts RG. Loss of a single amino acid from dystrophin resulting in Duchenne muscular dystrophy with retention of dystrophin protein. Hum Mutat. 2003;21:651. doi: 10.1002/humu.9143. [DOI] [PubMed] [Google Scholar]
  • 17.Prior TW, Papp AC, Snyder PJ, Burghes AH, Bartolo C, Sedra MS, Western LM, Mendell JR. A missense mutation in the dystrophin gene in a Duchenne muscular dystrophy patient. Nat Genet. 1993;4:357–360. doi: 10.1038/ng0893-357. [DOI] [PubMed] [Google Scholar]
  • 18.Ginjaar IB, Kneppers AL, v d Meulen JD, Anderson LV, Bremmer-Bout M, van Deutekom JC, Weegenaar J, den Dunnen JT, Bakker E. Dystrophin nonsense mutation induces different levels of exon 29 skipping and leads to variable phenotypes within one BMD family. Eur J Hum Genet. 2000;8:793–796. doi: 10.1038/sj.ejhg.5200535. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Molecular Diagnostics : JMD are provided here courtesy of American Society for Investigative Pathology

RESOURCES