Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Mar;85(5):1384–1388. doi: 10.1073/pnas.85.5.1384

Solid-phase peptide synthesis and solid-state NMR spectroscopy of [Ala3-15N][Val1]gramicidin A.

G B Fields 1, C G Fields 1, J Petefish 1, H E Van Wart 1, T A Cross 1
PMCID: PMC279775  PMID: 2449690

Abstract

[Ala3-15N][Val1]Gramicidin A has been prepared by solid-phase peptide synthesis and studied by solid-state 15N nuclear magnetic resonance spectroscopy. The synthesis of desformyl[Ala3-15N][Val1]gramicidin A employed N-hydroxysuccinimide esters of 9-fluorenylmethoxycarbonyl-N alpha-amino acids and completely avoided the use of acid. Since deblocking was done with piperidine and the peptide was removed from the resin by treatment with ethanolamine, this synthetic protocol prevented oxidation of the indole rings of this tryptophan-rich peptide and reduced truncations produced by acid hydrolysis. After formylation and purification by anion-exchange and high-pressure liquid chromatography, the peptide was obtained in an overall yield of 30%. Solid-state 15N nuclear magnetic resonance spectra of this peptide and uniformly labeled [15N]gramicidin A' oriented in hydrated lipid bilayers have been obtained, allowing unambiguous assignment of the [15N]Ala3 resonance in the latter. The solid-state 15N nuclear magnetic resonance experiments provide evidence that [Val1]gramicidin A is rotating about an axis that is perpendicular to the plane of the lipid bilayer and that the N--H axis is nearly parallel with the rotational axis. This study demonstrates that site-specifically labeled [15N]gramicidin A analogs prepared by solid-phase peptide synthesis are valuable tools in the study of the solid-state nuclear magnetic resonance spectra of samples in oriented lipid bilayers.

Full text

PDF
1384

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang C. D., Felix A. M., Jimenez M. H., Meienhofer J. Solid-phase peptide synthesis of somatostatin using mild base cleavage of N alpha-9-fluorenylmethyloxycarbonylamino acids. Int J Pept Protein Res. 1980 May;15(5):485–494. doi: 10.1111/j.1399-3011.1980.tb02926.x. [DOI] [PubMed] [Google Scholar]
  2. Chang C. D., Waki M., Ahmad M., Meienhofer J., Lundell E. O., Haug J. D. Preparation and properties of Nalpha-9-fluorenylmethyloxycarbonylamino acids bearing tert.-butyl side chain protection. Int J Pept Protein Res. 1980 Jan;15(1):59–66. doi: 10.1111/j.1399-3011.1980.tb02550.x. [DOI] [PubMed] [Google Scholar]
  3. Cross T. A., Opella S. J. Protein structure by solid state nuclear magnetic resonance. Residues 40 to 45 of bacteriophage fd coat protein. J Mol Biol. 1985 Apr 5;182(3):367–381. doi: 10.1016/0022-2836(85)90197-4. [DOI] [PubMed] [Google Scholar]
  4. Fischer W., Brickmann J. Ion-specific diffusion rates through transmembrane protein channels. A molecular dynamics study. Biophys Chem. 1983 Nov;18(4):323–337. doi: 10.1016/0301-4622(83)80045-3. [DOI] [PubMed] [Google Scholar]
  5. Gutte B., Merrifield R. B. The synthesis of ribonuclease A. J Biol Chem. 1971 Mar 25;246(6):1922–1941. [PubMed] [Google Scholar]
  6. Heimer E. P., Chang C. D., Lambros T., Meienhofer J. Stable isolated symmetrical anhydrides of N alpha-9-fluorenylmethyloxycarbonylamino acids in solid-phase peptide synthesis. Methionine-enkephalin synthesis as an example. Int J Pept Protein Res. 1981 Sep;18(3):237–241. [PubMed] [Google Scholar]
  7. Kent S. B., Mitchell A. R., Engelhard M., Merrifield R. B. Mechanisms and prevention of trifluoroacetylation in solid-phase peptide synthesis. Proc Natl Acad Sci U S A. 1979 May;76(5):2180–2184. doi: 10.1073/pnas.76.5.2180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mackay D. H., Berens P. H., Wilson K. R., Hagler A. T. Structure and dynamics of ion transport through gramicidin A. Biophys J. 1984 Aug;46(2):229–248. doi: 10.1016/S0006-3495(84)84016-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Meienhofer J., Waki M., Heimer E. P., Lambros T. J., Makofske R. C., Chang C. D. Solid phase synthesis without repetitive acidolysis. Preparation of leucyl-alanyl-glycyl-valine using 9-fluorenylmethyloxycarbonylamino acids. Int J Pept Protein Res. 1979 Jan;13(1):35–42. [PubMed] [Google Scholar]
  10. Merrifield R. B., Vizioli L. D., Boman H. G. Synthesis of the antibacterial peptide cecropin A (1-33). Biochemistry. 1982 Sep 28;21(20):5020–5031. doi: 10.1021/bi00263a028. [DOI] [PubMed] [Google Scholar]
  11. Nicholson L. K., Moll F., Mixon T. E., LoGrasso P. V., Lay J. C., Cross T. A. Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A'. Biochemistry. 1987 Oct 20;26(21):6621–6626. doi: 10.1021/bi00395a009. [DOI] [PubMed] [Google Scholar]
  12. Prasad K. U., Alonso-Romanowski S., Venkatachalam C. M., Trapane T. L., Urry D. W. Synthesis, characterization, and black lipid membrane studies of [7-L-alanine] gramicidin A. Biochemistry. 1986 Jan 28;25(2):456–463. doi: 10.1021/bi00350a027. [DOI] [PubMed] [Google Scholar]
  13. Prasad K. U., Trapane T. L., Busath D., Szabo G., Urry D. W. Synthesis and characterization of (1-13C) Phe9 gramicidin A. Effects of side chain variations. Int J Pept Protein Res. 1983 Sep;22(3):341–347. doi: 10.1111/j.1399-3011.1983.tb02100.x. [DOI] [PubMed] [Google Scholar]
  14. Prasad K. U., Trapane T. L., Busath D., Szabo G., Urry D. W. Synthesis and characterization of 1-(13) C-D X Leu12, 14 gramicidin A. Int J Pept Protein Res. 1982 Feb;19(2):162–171. [PubMed] [Google Scholar]
  15. Previero A., Coletti-Previero M. A., Cavadore J. C. A reversible chemical modification of the tryptophan residue. Biochim Biophys Acta. 1967 Dec 12;147(3):453–461. doi: 10.1016/0005-2795(67)90005-0. [DOI] [PubMed] [Google Scholar]
  16. Urry D. W. The gramicidin A transmembrane channel: a proposed pi(L,D) helix. Proc Natl Acad Sci U S A. 1971 Mar;68(3):672–676. doi: 10.1073/pnas.68.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Urry D. W., Trapane T. L., Romanowski S., Bradley R. J., Prasad K. U. Use of synthetic gramicidins in the determination of channel structure and mechanism. Int J Pept Protein Res. 1983 Jan;21(1):16–23. doi: 10.1111/j.1399-3011.1983.tb03073.x. [DOI] [PubMed] [Google Scholar]
  18. Wallace B. A. Structure of gramicidin A. Biophys J. 1986 Jan;49(1):295–306. doi: 10.1016/S0006-3495(86)83642-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang S. S. p-alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J Am Chem Soc. 1973 Feb 21;95(4):1328–1333. doi: 10.1021/ja00785a602. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES